首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of jet inlet geometry and aspect ratio on local and average heat transfer characteristics of totally nine confined impinging jets have been investigated experimentally using thermochromic liquid crystals and numerically by using a 3-D low Reynolds number k–? model. Experimental study by using liquid crystals for temperature measurement was conducted for three different jet exit geometries (circular, elliptic, rectangular). In addition, simulations were performed at the same mass flow rate for totally nine jet exit geometries including circular, elliptic and rectangular jets with different aspect ratios for dimensionless jet to plate distances 2, 6, and 12.As the aspect ratio of equal cross-sectional area elliptic and rectangular jets increases, heat transfer enhancement in the stagnation region was obtained. As a result higher aspect ratio jets can be used as a passive enhancement technique for localized heating or cooling especially at small jet to plate distances. Wall jet region comprises very large portion of the impinging plate under study and generally lower heat transfer rates were attained for higher aspect ratio jets in this region especially at small jet to plate distances. Therefore as the aspect ratio increases, lower average heat transfer rates were acquired. The effect of aspect ratio on local and average heat transfer decreases with increasing jet to plate distance. Even though the mass flow rate is the same, heat transfer rate of rectangular jets were reduced with increasing the cross-sectional area. With increasing jet to plate distance very similar heat transfer characteristics were observed along the major and minor axis directions.  相似文献   

2.
This article addresses the numerical analysis of single and multiple circular jets impinging perpendicularly on a flat plate for heating and cooling purposes. Computational fluid dynamics (CFD) is used to evaluate heat transfer calculations for different configurations and different flow boundary conditions. The commercial CFD package FLUENT is employed with various turbulence models. Results for a single jet are validated against experimental data. The SST k ? ω turbulence model is compared with the elliptic V2F model, and both were validated against experimental data. Results were obtained for a range of jet Reynolds numbers and jet-to-target distances. Optimization results for the single jet case are validated against experimental data. The SST k ? ω and V2F turbulence models succeeded with a reasonable accuracy (within 20% error) in reproducing experimental results. The heat transfer rates from the use of multijet configurations are discussed in the article. Transient heat transfer between multiple jets and a moving plate is more difficult to study due to the changing boundaries but is also very relevant in engineering applications. This article presents full CFD calculations of the transient heat transfer between a bank of circular jets and a moving plate. Design optimization has also been achieved for the single- and multiple-jet configurations.  相似文献   

3.
An experimental investigation of heat transfer from a round air jet impinging normally from below onto a heated square plate was performed. The objective of the investigation was to study the effect of roughness on both the heat transfer and the fluid flow characteristics. Smooth and rough plates were, therefore, used in the course of the experiments. The heat transfer data were collected for four jet Reynolds numbers, ranging from 6500 to 19 000. The Reynolds numbers are based on the jet-exit velocity (Ue) and the nozzle-exit diameter (D), Ree=UeD/ν. The nozzle-to-plate distance ranged from 0.05 to 15 nozzle-exit diameter to cover both the potential core and the far regions of the jet flow. The roughness was composed of cubes of 1 mm dimension distributed uniformly along the plate. The local and average Nusselt number values for the rough plate showed an increase ranging from 8.9% to 28% over those for the smooth plate. Roughness was found to have a strong effect on the flow characteristics; it affected the mean velocity as well as the turbulence intensity of the flow. The mean velocity profiles for the smooth case at radial distances of r/D=1 and r/D=2.5 showed steeper near-wall velocity gradients compared with the profiles of the rough case, where r is the radial distance measured from the plate center along the plate centerline. In addition, roughness caused an increase in the turbulence intensity of the flow.  相似文献   

4.
Confined swirling jet impingement onto an adiabatic wall   总被引:1,自引:0,他引:1  
Impinging swirling jets generate interesting flow fields and depending on the magnitude of the swirl velocity, circulation cells develop in the region close to the solid wall. Moreover, axial momentum of the jet is influenced by the magnitude of the swirl velocity. This, in turn, results in considerable entropy generation in the flow field. In the present study, confined swirling jet impingement onto an adiabatic wall is investigated. The flow and temperature fields are computed numerically for various flow configurations. Different jet exit velocity profiles are considered and their effects on the flow field are examined. The entropy production due to different flow configurations is computed and the irreversibility ratios due to fluid friction and heat transfer are determined. It is found that the jet axis tilts towards the radial direction as swirl velocity increases and reducing the velocity profile number enhances the entropy generation due to heat transfer. The irreversibility ratio variation with the velocity profile number behaves opposite for the fluid friction and heat transfer.  相似文献   

5.
Experiments were performed to study the heat transfer characteristics of a premixed butane/air slot flame jet impinging normally on a horizontal rectangular plate. The effects of Reynolds number and the nozzle-to-plate distance on heat transfer were examined. The Reynolds number varied from 800 to 1700, while the nozzle-to-plate distance ranged from 2de to 12de. Comparisons were made between the heat transfer characteristics of slot jets and circular jets under the same experimental conditions. It was found that the slot flame jet produces more uniform heat flux profile and larger averaged heat fluxes than the circular flame jet.  相似文献   

6.
A study of a coaxial double pipe jet at different temperatures was carried out at mean inner pipe jet to annulus jet velocity ratios from 1.0 to 3.0. The radial distributions of the local mean velocities and the fluctuating intensities of velocity (turbulence intensities) in isothermal air jets were measured at various axial distances of up to twenty times the pipe diameter downstream. Measurements were also made of the radial distributions of the local mean temperatures and the fluctuating intensities of temperature in non-isothermal air jets. The velocity profiles in relation to those of temperature are described in detail in the developing region of coaxial jets. Moreover, the fluctuating velocity intensities are compared with those of temperature. © 1998 Scripta Technica, Heat Trans. Jpn. Res., 27(6): 431–446, 1998  相似文献   

7.
Impinging jets may be used to achieve enhanced local heat transfer for convective heating, cooling, or drying. The issuing jet may contact the surface normally or obliquely. Factors such as jet attachment, surface angle, jet angle and size, separation distance between jet orifice and surface of impingement, and trajectory influence heat transfer dramatically. This study addresses the thermal problem of jet impingement on an inclined surface and is motivated by the practical application of air jets issuing out of a defroster’s nozzles and impinging on the inclined windshield surface of a vehicle. The effects of incoming fluid velocity, openings’ geometry (circular vs. rectangular), number of openings, angle that the inclined surface makes with the horizontal plane and angle of impinging jet on heat transfer are examined. Fluid mechanics and heat transfer characteristics are exhibited in details for a configuration with three rectangular openings. A comparative study for other configurations is also featured. The results are correlated in terms of governing dimensionless parameters through numerically-based correlations that are useful for predicting heat transfer on an inclined surface subject to impinging airflow.  相似文献   

8.
The present article is focused on modelling of flow and heat transfer behaviour of Cu-water nanofluid in a confined slot jet impingement on hot moving plate.Different parameters such as various moving plate velocities,nanoparticles at various concentrations,variation in turbulent Reynolds number and jet nozzle to plate distance have been considered to study the flow field and convective heat transfer performance of the system.Results of distribution of local and average Nusselt number and skin friction coefficients at the plate surface are shown to elucidate the heat transfer and fluid flow process.Qualitative analysis of both stream function and isotherm contours are carried out to perceive the flow pattern and heat transfer mechanism due to moving plate.The results revealed that average Nusselt number significantly rises with plate velocity in addition with jet inlet Reynolds number.Correlations of the average Nusselt numbers are presented.  相似文献   

9.
INTRODUCTIoNJetimpingementhasbeenextensivelyemployedintechnicalprocessestoproducerelativelyhighheat/massfluxes.Incomparisonwiththeheat/masstransferratesprovidedbyconventionaltechniqueswithfluidfiowsparalleltotheheat/masstransfersur-face,aremarkableincreaseintransfercoefficientscanbeobtainedinthisfashion.Inmostcasesairisusedastheworkingmedium.Examplesofairjetapp1icationsincludecoolingofturbinebladesandelectroniccom-ponents,annealingofmetallicandplasticsheets,dry-ingoftextilesandpaper,andtem…  相似文献   

10.
Local heat transfer is predicted in turbulent axisymmetric jets, impinging onto a flat plate. A non-linear k-e model is used, in which both the constitutive law for the turbulent stresses and the transport equation for the turbulent dissipation rate e have an important contribution in the improved heat transfer predictions. The shape of the Nusselt number profiles, expressing dimensionless heat transfer, as well as the stagnation point value, are well predicted for different distances between the nozzle exit and the plate. Accurate flow field predictions are the basis for good heat transfer predictions. For a fixed Reynolds number, the influence of the nozzle-plate distance is well captured. For a fixed distance, the influence of the Reynolds number is correctly reproduced. Comparisons are made to a low-Reynolds standard k-e model and the v2-f model. A thorough discussion is found in [4]. Only a summary of those results is discussed here, while some new results are also presented.  相似文献   

11.
The flow field around a circular cylinder elastically suspended with a cantilever‐type plate spring in the jet impingement region was visualized to investigate the mechanism of the impingement heat transfer. The impingement distance H was kept constant at 3 or 5 times as large as the jet slot width, h = 15 mm.The Reynolds number was fixed at 10,000, or 5000 in the case of flow visualization. The self‐induced periodic swing motion of the cylinder across the jet axis was caused by the interaction between the jet and the elastically suspended cylinder. It was found that this swing motion has direct effects on the flow and heat transfer characteristics of the stagnation region. The ensemble‐averaged values of the flow velocity and its fluctuations depended on the cylinder diameter and the impingement distance. The local Nusselt number in the case of H/h = 3 with the oscillating cylinder of the smallest diameter D = 4 mm was increased to 1.15 times as large as that without the cylinder. The interesting patterns of the intermittency function defined with a certain threshold level of turbulence intensity were obtained under the above experimental conditions. © 2001 Scripta Technica, Heat Trans Asian Res, 30(4): 313–330, 2001  相似文献   

12.
We present numerical computations of flow and heat transfer in multiple jets impinging normally on a flat heated surface, obtained with a new second-moment turbulence closure combined with an elliptic blending model of non-viscous wall blocking effect. This model provides the mean velocity and turbulent stress fields in very good agreement with PIV measurements. The exploration of several simpler closures for the passive thermal field, conducted in parallel, confirmed that the major prerequisite for the accurate prediction of the temperature field and heat transfer is to compute accurately the velocity and stress fields. If this is achieved, the conventional anisotropic eddy-diffusivity model can suffice even in complex flows. We demonstrate this in multiple-impinging jets where such a model combination provided the distribution of Nusselt number over the solid plate in good agreement with experiments. Extension of the elliptic blending concept to full second-moment treatment of the heat flux and its truncation to a quasi-linear algebraic model is also briefly discussed.  相似文献   

13.
Modeling study is performed to compare the flow and heat transfer characteristics of laminar and turbulent argon thermal-plasma jets impinging normally upon a flat plate in ambient air. The combined-diffusion-coefficient method and the turbulence-enhanced combined-diffusion-coefficient method are employed to treat the diffusion of argon in the argon–air mixture for the laminar and the turbulent cases, respectively. Modeling results presented include the flow, temperature and argon concentration fields, the air mass flow-rates entrained into the impinging plasma jets, and the distributions of the heat flux density on the plate surface. It is found that the formation of a radial wall jet on the plate surface appreciably enhances the mass flow rate of the ambient air entrained into the laminar or turbulent plasma impinging-jet. When the plate standoff distance is comparatively small, there exists a significant difference between the laminar and turbulent plasma impinging-jets in their flow fields due to the occurrence of a large closed recirculation vortex in the turbulent plasma impinging-jet, and no appreciable difference is found between the two types of jets in their maximum values and distributions of the heat flux density at the plate surface. At larger plate standoff distances, the effect of the plate on the jet flow fields only appears in the region near the plate, and the axial decaying-rates of the plasma temperature, axial velocity and argon mass fraction along the axis of the laminar plasma impinging-jet become appreciably less than their turbulent counterparts.  相似文献   

14.
The flow field features and heat transfer enhancement are investigated on a gas turbine blade by applying the jet impingement cooling method. The distribution of the flow field and the Nusselt number (Nu) was determined on the targeted surface in the cooling channel. The injection holes of different shapes, such as circular, square, and rectangular were considered. The Reynolds numbers (Re) of the airflow in the range of 2000–5000 and aspect ratios of 0.5–2 were particularly focused. The flow vortices and recirculation in the cooling channel and their influence on the heat transfer enhancement were analyzed in detail under different airflow and geometric conditions. Decreasing the ratio of the distance between jet-to-target plate to the diameter of the jet orifice (H/d) increased the heat transfer rate and produced high-intensity vortices and recirculation zones. It was noticed that the formation and generation of vortices and recirculation have important effects on the convective heat transfer rate at the impingement surface. Local Nusselt number, formation of complex vortices, and airflow recirculation in the cooling channel decreased with the increase in the distance between the jet hole and the targeted surface. It was found that with the increase in the Reynolds number of the jet, heat transfer between cold airflow and the targeted surface increased. Moreover, it was observed that the cooling performance of the round and square jet holes was better than the rectangular holes.  相似文献   

15.
The present study investigates the effects of spent air flows with and without effusion holes on heat/mass transfer on a target plate for array impinging jets. For a conventional type of array impinging jets without effusion holes, the spent air of the injected jets forms a cross-flow within the confined space and affects significantly the downstream jet flow. The injection plate of array impinging jets is modified having effusion holes to prevent the cross-flow of the spent air where the spent air is discharged through the effusion holes after impingement on the target plate. A naphthalene sublimation method is employed to determine local heat/mass transfer coefficients on the target plate using a heat and mass transfer analogy. The flow patterns of the array impinging jets are calculated numerically and compared for the cases without and with the effusion holes. For small gap distances, heat/mass transfer coefficients without effusion holes are very non-uniform due to the strong effects of cross-flow and re-entrainments of spent air. However, uniform distributions and enhancements of heat/mass transfer coefficients are obtained by installing the effusion holes. For large gap distances, the effect of cross-flow is weak and the distributions and levels of heat/mass transfer coefficients are similar for both cases.  相似文献   

16.
倾斜射流对移动平板表面紊动和传热特性的影响   总被引:1,自引:0,他引:1  
采用雷诺应力湍流模型和Simplic算法对半封闭槽道内倾斜射流冲击移动平板的流动和传热特性进行了数值模拟,研究了不同射流角度和不同平板移动速度下平板近壁湍动能和板面努塞尔数的变化.结果表明:射流角度和平板运动速度对平板近壁湍动能和表面努塞尔数值分布影响显著;当入射角与平板运动方向相同时,板速的升高提高了近壁面的湍动能,但是降低了冲击区域的局部努塞尔数值;平板表面的平均努塞尔数值随板速的提高先降低后大幅升高,高速下角度对平板表面的平均传热效果影响较小;当入射角为80°,平板运动方向与入射方向相反且板速和射流速度相同时,在移动平板表面能够获得较佳的紊动和传热效果.  相似文献   

17.
Convective heat transfer from a moving isothermal hot plate due to confined slot-jet impingement is investigated numerically. Two-dimensional turbulent flow is considered. The rectangular flow geometry consists of a confining adiabatic wall placed parallel to the moving impingement surface with the slot-jet located in the middle of the confining wall. The k ? ε turbulence model with enhanced wall treatment is used for the turbulence computations. The problem parameters are the jet exit Reynolds number, ranging from 5000 to 20,000, the normalized plate velocity, ranging from 0 to 2, and the normalized distance of separation between the impingement plate and the jet exit, ranging from 6 to 8. The computed flow patterns and isotherms for various combinations of these parameters are analysed to qualitatively understand the effect of the plate motion on the heat transfer phenomena. The distribution of the local and average Nusselt numbers and the skin friction coefficients at the hot moving surface for above combinations of the flow parameters are presented. Results are compared against corresponding cases for heat transfer from a stationary plate. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number as well as with the plate velocity. The average skin friction coefficient, on the other hand, is relatively insensitive to the Reynolds number but increases significantly with the plate velocity.  相似文献   

18.
The flow and heat transfer characteristics of confined jet array impingement with crossflow is investigated. Discrete impingement pressure measurements are used to obtain the jet orifice discharge flow coefficient. Digital particle image velocimetry (DPIV) and flow visualization are used to determine the flow characteristics. Two thermal boundary conditions at the impinging surface are presented: an isothermal surface, and a uniform heat flux, where thermocouple and thermochromic liquid crystal methods were used, respectively, to determine the local heat transfer coefficient. Two nozzle geometries are studied, circular and cusped ellipse. Based on the interaction with the jet impingement at the surface, the crossflow is shown to influence the heat transfer results. The two thermal boundary conditions differ in overall heat transfer correlation with the jet Reynolds number. Detailed velocity data show that the flow development from the cusped ellipse nozzle affects the wall region flow more than the circular nozzle, as influenced by the crossflow interactions. The overall heat transfer for the uniform heat flux boundary condition is found to increase for the cusped ellipse orifice.  相似文献   

19.
An experimental study is presented for the mixing of one- and dual-line heated jets injected at 60° angle with x-axis into a cold crossflow in a rectangular channel. Measurements of the mean temperature, velocity, and turbulence intensity together with the flow visualization were performed. Self-similar forms for the dimensionless vertical temperature profiles were found. Parametric variations characterizing the mixing processes of the temperature and velocity fields were examined and correlated in terms of the momentum flux ratio and downstream distance. Results show that both the thermal and velocity penetration depths increase with increasing momentum flux ratio and downstream distance. The turbulence intensity is strong within the region of jet half-width, and the maximum value occurs at a point close to the jet velocity trajectory.  相似文献   

20.
Local heat transfer is predicted in turbulent axisymmetric jets, impinging onto a flat plate. A non-linear k-ε model is used[1], in which both the constitutive law for the turbulent stresses and the transport equation for the turbulent dissipation rate ε have an important contribution in the improved heat transfer predictions. The shape of the Nusselt number profiles, expressing dimensionless heat transfer, as well as the stagnation point value, are well predicted for different distances between the nozzle exit and the plate. Accurate flow field predictions are the basis for good heat transfer predictions. For a fixed Reynolds number, the influence of the nozzle-plate distance is well captured. For a fixed distance, the influence of the Reynolds number is correctly reproduced. Comparisons are made to a low-Reynolds standard k-ε model[2] and the v2-f model[3]. A thorough discussion is found in [4]. Only a summary of those results is discussed here, while some new results are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号