共查询到17条相似文献,搜索用时 99 毫秒
1.
为了在衣着饰物变化条件下进行步态识别,提出了一种基于动态部位特征的步态识别方法。首先,采用泊松方程给步态轮廓内的每个点赋值,并构造合适的阈值函数来提取步态序列的动态部位特征;然后,统计其等角度间隔的扇形区域内的均值和方差,用其构造动态特征向量;最后,利用支持向量机算法在行走人衣着饰物发生变化的条件下进行步态分类。通过在CASIA大规模步态数据库上的实验,验证了该方法的有效性和鲁棒性。 相似文献
2.
基于三维步态特征的步态识别方法 总被引:1,自引:0,他引:1
研究步态识别问题,针对在当前二维步态识别系统中,识别过程仅仅针对灰度、平面几何距离等二维特征信息,忽略了人体走路时的三维步态特征,步态识别准确度不高的问题.提出了一种加入三维参数的步态识别算法.利用摄像机采集单帧步态图像序列,利用身体结构的知识和摄像机标定的知识提取出人体走步时的人体三维特征数据,利用提取出二维和三维的步态特征,进行步态识别.结果表明相对于以二维步态特征为参数的步态识别,识别率有了明显改进. 相似文献
3.
一种基于静态和动态特征的步态识别新方法 总被引:1,自引:1,他引:1
最近,利用步态对个人身份进行识别受到越来越多生物识别技术研究者的重视。步态能量图(Gait EnergyImage,GEI)是一种有效的步态表征方法。把步态能量图分解为身体相关能量图(Body-Related GEI,BGEI)、步态相关能量图(Gait-Related GEI,GGEI)、身体步态相关能量图(Body-Gait-Related GEI,BGGEI)3部分,利用傅立叶描绘子对身体相关能量图(BGEI)、身体步态相关能量图(BGGEI)进行描述,利用Gabor小波提取步态相关能量图(GGEI)的幅值特征,分别研究了它们的识别能力,并在Rank层和Score层融合步态相关能量图(GGEI)、身体步态相关能量图(BGGEI)这两部分信息用于步态识别。该算法在CASIA数据库上进行的试验取得了较高的正确识别率。 相似文献
4.
基于腿部三角特征的贝叶斯步态识别方法 总被引:1,自引:0,他引:1
提出了一种基于步态序列中腿部三角特征的步态表示方法,在这种特征上用改进的朴素贝叶斯分类方法进行步态识别。选取步幅最大、最小两种情况下的姿态作为关键帧,用三角型模拟其腿部特征,提取三角型模型参数作为步态特征,识别时先分别用KNN和一种改进的N-best取得属性值在训练数据中的对应数值,然后用贝叶斯分类方法识别。在NLPR数据库上使用留一校验方法进行算法验证,实验证明该方法简单快速,而且取得了比较理想的识别效果。 相似文献
5.
6.
提出一种基于多区域侧影面积的步态识别方法,该方法将视频序列中检测出的步态侧影划分为5个子区域,提取每个子区域中的侧影面积并计算步态序列中面积的变化特征,从而构成描述步态序列的特征向量,实验表明该方法具有较好的识别性能,是一种有效的步态识别方法. 相似文献
7.
基于人行走时的下肢角度变化包含丰富的个体识别信.幽观点,提出利用下肢角度特征进行步态识别的新方法。对每个步态序列,依据人体解剖学的先验知识定位下肢关节点,计算相邻关节点连线与竖直线的夹角,以此作为下肢角度;通过步态周期分析,提取一个步态周期的下肢角度变化序列作为特征向量表征步态。最后,采用针对小样本问题具有很好分类效果的支持向量机技术实现步态的分类决策。CASIA步态数据库上的仿真结果证明本方法具有较高的识别性能。 相似文献
8.
针对步态识别性能易受视角、着装和携带物品等变化影响的问题,提出了一种基于修正步态能量图和视角检测的步态识别方法。首先,对步态能量图进行修正,降低着装和携带物品的变化对步态识别的影响;接着,基于修正的步态能量图提取熵特征,并依据最近邻准则检测步态序列的视角;最后,在相同视角的数据库下,采用二维主成分分析和二维线性判别分析相结合的方法提取步态特征,并采用最近邻准则进行分类,以降低视角变化对步态识别的影响。通过在CASIA B数据集上进行对比实验,证实所提方法对视角、着装和携带物品等变化的鲁棒性强,平均识别率高。 相似文献
9.
对于只有单一步态信息的特征数据库,在人数众多时,遍历识别算法识别时间长、识别率低。针对这个缺点,提出一种结构化步态特征表征和快速步态识别方法,将人的步态信息与身高、性别、年龄等一起构成结构化的步态特征,用不同传感器采集数据,不同的方法提取各个特征分量并独立加以利用。结构化的步态特征便于识别算法对步态识别问题进行分级处理,缩小识别范围。实验表明,文中方法不仅能够提高识别速度,而且能获得更高的识别率。 相似文献
10.
步态作为一个新兴的生物特征,具有广泛的应用前景。现阶段比较成熟的非模型化方法步态能量图,能将一个步态序列表示为单幅的灰度图像,对噪声有较好的鲁棒性和较好的识别效率,但是不能很好的适应人行走速度的改变。因此,本文提出了一种基于关键帧能量固定的步态识别方法。该方法在步态能量图的基础上,对步态序列的关键帧进行了能量固定,将步态能量图转变成为能量固定后的步态能量图再进行特征的提取和识别。实验结果表明,该方法相对传统的步态能量图,能更好的适应速度对识别的影响。 相似文献
11.
12.
步态是生物特征识别领域的一个新兴热点,它有以下3大优势:远距离识别、非侵犯性和难于隐藏。由于当前提出的大量步态特征提取算法要么过于复杂,要么识别率不高,难以满足自动步态识别的需要,因此,为了进行准确快速的步态识别,提出了一种新的基于区域特征的快速步态识别方法。该方法首先将检测出的2维人体侧影分为头部、躯干和腿部3个区域;然后分别提取每个区域的目标面积;最后将这些面积特征和人体的宽高比特征一起构成步态特征矢量用于训练和识别。此外,还改进了一种新的N—best分类器,该分类器在一定程度上提高了算法的识别率。实验结果表明,该新方法不仅简单快速,而且在UCSD和CMU数据集上分别得到了90%和98%左右的高识别率。 相似文献
13.
基于角度特征分量特征的步态识别 总被引:1,自引:0,他引:1
目前,在步态识别技术中多数描述步态特征的方法在非侧面视角下识别效果一般都不够理想,通常会明显低于侧面视角,针对这一问题,文章提出一种以角度特征分量特征作为步态特征的识别方法,提高步态特征的分类能力从而提高识别率。在步态检测部分文章采用基于色度坐标的混合高斯来抑制阴影和消除噪声,步态识别部分使用支持向量机对所提取的角度特征分量特征进行训练和分类,最终在保证侧面视角识别率的情况下同时提高在非侧面视角下的识别效果。 相似文献
14.
为有效抑制观察视角及鞋帽服饰等外界因素的干扰,克服目前常用整体模型步态识别算法的不足,提出将人体轮廓面积特征与支持向量机分类器相结合的识别方法。该方法在步态序列图像的人体轮廓进行提取和规格化,将轮廓图叠加后进行网格式划分,提取轮廓单元模块面积作为步态特征识别参量。使用南佛罗里达大学的步态数据库,分别采用线性、多项式和径向基内核函数对5种不同外界因素条件下的数据进行实验,该方法的正确识别率为82%~100%,且对视角及鞋帽服饰的干扰不敏感,具有更强的鲁棒性。实验表明人体轮廓面积更能反映步态特征,将该面积特征与SVM分类相结合可以获得更好的识别性能。 相似文献
15.
根据人体步态变化特点,提出一种基于特征融合和神经网络的步态识别算法。首先采用时域差分法对运动人体轮廓进行分割,然后分别提取空间特征和频率特征,将两步态特征融合在一起,从而实现步态的分类和识别。在CASIA步态数据库上进行仿真实验,仿真结果表明,该方法不仅克服了单一特征提取方法存在的缺陷,同时提高了步态识别正确率。 相似文献
16.