首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
研究了普通混凝土、聚丙烯纤维混凝土、钢纤维混凝土及混杂纤维混凝土高温后的抗压、抗折及劈裂抗拉强度的变化规律。结果表明,混凝土的力学性能随着温度的升高而逐渐降低;温度低于400℃时,聚丙烯纤维混凝土力学性能有所改善,温度高于400℃时,改善作用不明显;800℃时,钢纤维混凝土力学性能残余率都较高;混杂纤维混凝土抗压强度改善作用最显著,残余率最高达到32.4%。  相似文献   

2.
刘华新  郑太元 《工业建筑》2022,(2):18-23+107
对高温作用下的素混凝土、纳米SiO2混凝土、玄武岩纤维增强纳米SiO2混凝土进行抗压、劈裂抗拉和抗折试验,建立了混凝土强度预测模型。结果表明:各组混凝土抗压强度均在400℃时达到峰值,此时各组混凝土较常温时提高范围为3.5%~6.8%,随后逐渐降低;劈裂抗拉强度和抗折强度均随着温度的升高而逐渐降低,800℃时,素混凝土的劈裂抗拉强度残余率和抗折强度残余率分别为27.6%、36.2%。纳米SiO2的掺入提高了素混凝土的抗压、劈裂抗拉和抗折强度。掺入玄武岩纤维后的纳米SiO2混凝土在800℃高温后的抗压强度、劈裂抗拉强度、抗折强度最大分别提高了33.7%、15.6%、17.2%。建立的高温作用后混凝土强度预测模型的精确度较高。  相似文献   

3.
基于高温后强度和变形性能指标评价玄武岩纤维混凝土耐高温性能,分析了不同温度作用后玄武岩纤维掺量的混凝土试件外形特征、质量损失、抗折和抗压强度以及抗压峰值应变,对高温作用后玄武岩纤维混凝土力学性能变化规律进行了探究。试验表明:随温度的升高,玄武岩纤维混凝土抗压和抗折试件的质量逐渐减小;室温至400℃时,玄武岩纤维混凝土抗压强度有所提高而抗折强度迅速下降,抗压峰值应变变化不明显;400~800℃时,随温度的增加,抗压强度与抗折强度快速下降,而抗压峰值应变快速增加。  相似文献   

4.
研究了玄武岩纤维掺量、PVA纤维掺量以及矿渣微粉掺量对高温后PVA-玄武岩混杂纤维高性能混凝土(HFHPC)抗压强度和抗折强度的影响.结果表明:200℃时,试件的抗压强度有所提高,抗折强度变化不明显,200℃后,试件的强度随温度的升高而降低;与素混凝土相比,HFHPC的强度残余率更高;随着玄武岩纤维掺量、PVA纤维掺量...  相似文献   

5.
研究了普通混凝土、聚丙烯纤维混凝、钢纤维混凝土及混杂纤维混凝土高温后的抗压强度、抗折强度及力学性能残余率的变化规律。结果表明,混凝土的力学性能随着温度的升高而逐渐降低;温度小于400℃时,聚丙烯纤维混凝土力学性能有所改善,温度大于400℃时,改善作用不明显;800℃时,钢纤维混凝土力学性能残余率都较高;混杂纤维混凝土抗压强度改善作用最显著,残余率最高。  相似文献   

6.
《混凝土》2016,(8)
分别将钢纤维、聚丙烯纤维按照0.25%、0.5%、0.75%的体积掺加率,以体积比1∶1、1∶2、2∶1混杂后掺入C60混凝土基体中共浇筑30组抗压、抗折、劈裂抗拉试件,通过对其进行抗压、抗折、劈裂抗拉试验研究,分析纤维掺量和混杂比对高强混凝土基本力学性能的影响。结果表明:混杂纤维的掺入降低了混凝土基体的抗压强度,混杂纤维混凝土抗压强度随纤维掺加率增大总体呈下降趋势,相同体积掺加率下,抗压强度随着混杂比中钢纤维掺量的增加亦大致呈逐渐下降的趋势;混杂纤维的掺入对混凝土基体的劈裂抗拉强度有很大改善,混杂纤维混凝土劈裂抗拉强度随着体积掺加率的增加呈先下降后增高的趋势,但随混杂比的规律并不清晰;混杂纤维的掺入对混凝土基体的抗折强度均有较大幅度提高,混杂纤维混凝土抗折强度随纤维掺量的增大呈先升后降的趋势,同体积掺加率情况下,所有混杂比对纤维混凝土抗折强度影响的规律亦不一致。  相似文献   

7.
为研究混杂掺入钢纤维和聚丙烯纤维对再生混凝土(RAC)力学性能及抗冲击性能的影响,设计制作了素RAC及不同纤维掺量的钢纤维RAC和钢/聚丙烯混杂纤维RAC试件,并对其进行了立方体抗压、劈裂抗拉、抗折强度和抗冲击性能试验研究。试验结果表明:与素RAC相比,掺入钢纤维显著提高了RAC的抗压性能,但混合掺入聚丙烯纤维后其抗压强度有所降低;单掺钢纤维或混杂掺入钢/聚丙烯纤维均提高RAC的劈裂抗拉、抗折和抗冲击性能;与单掺钢纤维相比,混合掺入钢/聚丙烯纤维对RAC的抗拉、抗折和抗冲击性能的改善效果更明显。  相似文献   

8.
通过对16组分别掺入钢纤维和聚丙烯纤维的活性粉末混凝土试件进行抗压、抗折强度试验,并且对每组试件采用了三种不同的养护方案。试验结果表明:热水养护对活性粉末混凝土的抗压和抗折强度有较大幅度的提升,当温度达75℃时,提升幅度10%~30%;相比单掺聚丙烯纤维单掺钢纤维对活性粉末混凝土试块的抗压、抗折强度提升幅度更大,钢纤维含量为4%时活性粉末混凝土的抗压和抗折强度分别提高21%和53%;钢纤维掺量为2%和聚丙烯纤维掺量为0.3%并且经过75℃高温养护的活性粉末混凝土试块其抗压、抗折力学性能达到最优,其抗压强度达到168.4MPa,抗折强度达到31.57MPa。  相似文献   

9.
《混凝土》2017,(11)
为了研究钢-聚丙烯混杂纤维对再生混凝土基本力学性能的影响,设计制作了10组混杂纤维再生混凝土试件和1组普通再生混凝土试件,并对其进行立方体抗压强度、劈裂抗拉强度、抗折强度试验。试验中考虑的因素有钢-聚丙烯纤维混掺掺量、钢纤维和聚丙烯纤维长径比以及钢纤维类型,分析了各因素对再生混凝土基本力学性能的影响。结果表明:当钢纤维掺量为117 kg/m~3,聚丙烯纤维掺量为0.6 kg/m~3时,混杂纤维再生混凝土表现出较好的增强效果,其中立方体抗压、劈裂抗拉及抗折强度较普通再生混凝土分别提高了17.68%、57.88%、28.32%;随着钢纤维长径比的增加混杂纤维再生混凝土各强度均得到显著提高,最高提高了10.51%,而聚丙烯纤维长径比对混杂纤维再生混凝土各强度的影响效果不明显。端勾型钢纤维混杂纤维再生混凝土各强度均高于波纹型。此外,掺入混杂纤维后,再生混凝土由脆性破坏转变为一定的塑性破坏。  相似文献   

10.
通过对混凝土试件进行碳化高温试验,研究混凝土碳化深度、质量损失及碳化高温后抗压与抗折强度的变化规律,分析碳化高温后混凝土力学性能衰减机理,建立基于碳化高温后混凝土质量损失率的抗压强度及抗折强度计算式。研究表明:随着碳化的不断进行,混凝土碳化深度和质量损失随之增大;碳化龄期为7,14,28 d时,混凝土抗压强度随温度升高先减小后增大然后再减小,碳化龄期为14,28 d的抗压强度峰值出现在400℃;混凝土抗折强度总体趋势是随温度升高而降低,但在碳化龄期14,28 d、温度200℃时,其抗折强度略有升高。利用基于碳化高温后混凝土质量损失率的抗压及抗折强度计算式,可预估不同碳化龄期、不同温度下混凝土的抗压、抗折强度。  相似文献   

11.
对掺加聚丙烯-玄武岩混杂纤维的陶粒混凝土进行了抗压强度、抗折强度、劈裂抗拉强度试验,得到了混杂纤维对陶粒混凝土力学性能的影响规律。结果表明:混杂纤维掺量为0.2%时,陶粒混凝土的抗压强度、劈裂抗拉强度、抗折强度提升幅度最大,分别较基准组提高了11.21%、30.73%、15.26%,但掺量过大时陶粒混凝土的力学性能会下降,甚至出现负效应;聚丙烯纤维与玄武岩纤维的混杂比为2∶1时,其对陶粒混凝土的增强效果较好;混杂纤维能增强陶粒混凝土的韧性,对抗折强度和抗拉强度提升效果明显,对抗压强度提升效果较小。  相似文献   

12.
完成了聚丙烯纤维(PPF)体积掺量分别为0、0.1%、0.2%和0.3%的活性粉末混凝土(RPC)经20~900℃后的力学性能试验,包括70.7 mm×70.7 mm×70.7 mm立方体受压试验、70.7 mm×70.7 mm×228.0 mm棱柱体受压试验、40 mm×40 mm×160 mm棱柱体受折试验和“8”字形试件轴心受拉试验。考察了PPF对RPC高温爆裂的抑制效果,分析了PPF掺量和经历温度对RPC高温后力学性能(残余立方体抗压强度、残余轴心抗压强度、残余抗折强度和残余轴心抗拉强度)的影响。结果表明:PPF体积掺量0.1%和0.2%时对RPC高温爆裂的抑制作用不明显,体积掺量0.3%时可以防止RPC发生爆裂;常温下PPF的掺入对RPC力学性能有不利影响,经历温度高于200℃时,随PPF掺量的增大高温后RPC力学性能相应提高;掺PPF的RPC高温后残余抗压强度、残余抗折强度和残余轴心抗拉强度均随经历温度的升高先增大后减小,3种强度的临界温度分别为300℃、300℃和120℃。根据试验统计数据建立了高温后PPF体积掺量不同的RPC残余抗压强度、残余抗折强度和残余轴心抗拉强度随温度变化的计算式。  相似文献   

13.
复合纤维对高性能混凝土高温性能的影响研究   总被引:3,自引:0,他引:3  
张道玲  鞠丽艳 《工业建筑》2005,35(1):8-10,14
针对高性能混凝土的防火与抗爆裂性能低的特点 ,采用低熔点 (聚丙烯纤维 )及高熔点纤维 (钢纤维 )复合的方法 ,对高性能混凝土高温性能 (抗折强度、抗压强度及劈裂抗拉强度、抗爆裂性能 )进行改善。研究表明 ,80 0℃时 ,复合纤维混凝土的抗折强度剩余率约 15 % ,明显高于基准混凝土的抗折强度剩余率 (约6 % ) ;抗压强度剩余率约 15 % ,与基准混凝土的强度剩余率相当 (约 15 % ) ;劈裂抗拉强度剩余率约 2 0 % ,明显高于基准混凝土的抗折强度剩余率 (约 10 % )。另外 ,复合纤维对改善混凝土的抗爆裂性能特别有效 ,同时分析了复合纤维改善高性能混凝土高温性能的作用机理。  相似文献   

14.
通过对分别掺入聚丙烯腈纤维(PANF)、聚乙烯醇纤维(PVAF)的陶粒混凝土进行20,200,400,600,800℃五个温度水平高温后的加载试验,研究纤维掺入对陶粒混凝土抗压强度、抗拉强度与弹性模量随温度的变化规律,并与无纤维掺入陶粒混凝土进行对比分析。试验表明:分别掺入纤维PANF和PVAF后,对高温后陶粒混凝土的立方体抗压强度无明显改善效应,但可有效提高陶粒混凝土高温后的劈裂抗拉强度;掺入PANF后可改善陶粒混凝土在达到峰值极限荷载后的脆性破坏特性,在600℃内可有效提高陶粒混凝土高温后的棱柱体抗压强度,在20~400℃内能有效减缓陶粒混凝土弹性模量的降低。  相似文献   

15.
水泥基材料是由水泥、骨料等组成的复合材料,高温作用后材料内部产生严重的热损伤,导致其力学及耐久性能降低。通过数码显微镜观察了经过105、200、400、600、800℃温度作用后水泥砂浆的表面形貌,发现砂浆表面热损伤裂缝的宽度随着温度的升高而逐渐增大。通过称重法对高温作用后水泥砂浆的毛细吸水性能进行测试后发现:热损伤作用对于水泥砂浆的一维吸水过程有着明显影响,毛细吸水系数随着温度的升高而急剧增加,经过800℃高温作用后的砂浆样品的毛细吸水系数为105℃下烘干的砂浆样品毛细吸水系数的5.7倍。通过抗压、抗折和劈裂抗拉试验研究了高温后砂浆的力学性能,证实了砂浆的抗压、抗折和劈裂抗拉强度随着温度的升高而衰减的规律,800℃作用后砂浆样品的抗压、抗折和劈裂抗拉强度分别为20℃时的31%、61%、19%。同时,测得的试验数据表明:高温损伤砂浆毛细吸水系数与其抗压、抗折及劈裂抗拉强度间均存在着明显的线性关系,因此吸水性系数可作为高温损伤水泥基材料力学及耐久性能评价的重要指标。  相似文献   

16.
为研究不同龄期混凝土高温后的力学性能变化,对不同养护龄期的混凝土设置不同的温度和继续养护时间,对其抗压强度和劈裂抗拉强度进行试验.结果表明:各龄期混凝土的抗压强度和劈裂抗拉强度随经历温度的升高基本呈下降趋势,但当温度不高于100℃,龄期不大于14 d时,其强度反而略有上升.混凝土经历相同温度情况下,高温时龄期越早,强度...  相似文献   

17.
混杂纤维混凝土的力学性能及抗渗性能   总被引:4,自引:1,他引:3  
进行了混杂纤维(钢纤维-改性聚丙烯纤维)混凝土力学性能及抗渗性能的试验研究.结果表明,混杂纤维可以提高混凝土的抗压强度、劈拉强度和抗折强度,但对混凝土抗渗性能影响不大.引气剂有助于提高混杂纤维混凝土的抗渗性.另外,简单分析了纤维混杂方式对混凝土力学性能和抗渗性能影响的机理.  相似文献   

18.
钢纤维改善轻骨料混凝土力学性能的试验研究   总被引:3,自引:2,他引:1  
研究了钢纤维掺量不同(体积分数分别为0,0.5%,1.0%,1.5%,2.0%)的钢纤维轻骨料混凝土(SFLWC)静态力学性能和自由落锤抗冲击性能,其中的静态力学性能包括立方体抗压强度、轴心抗压强度、劈裂抗拉强度、抗折初裂强度、抗折强度、静力受压弹性模量、抗折模量和弯曲韧性等.试验结果表明:掺入钢纤维能显著提高轻骨料混凝土的劈裂抗拉强度、抗折强度、弯曲韧性和抗冲击性能,但对轻骨料混凝土的抗压强度和弹性模量影响较小.另外,钢纤维的掺入提高了轻骨料混凝土的拉压比,很大程度上改善了轻骨料混凝土的脆性.  相似文献   

19.
李晗 《混凝土》2012,(2):93-95
通过混杂纤维混凝土试块的高温后抗压试验,分析了温度、纤维类别和纤维体积率、混凝土基体强度等级对混凝土高温后抗压强度的影响。结果表明:随着经历温度的升高,混杂纤维混凝土高温后的抗压强度及高温后与常温下抗压强度比在400℃之后下降幅度较大;适宜掺量的钢纤维(1%纤维体积率)和聚丙烯纤维(0.1%纤维体积率)能较好的提高混杂纤维混凝土高温后的抗压强度。在试验研究的基础上,建立了考虑温度、钢纤维和聚丙烯纤维体积率共同影响的高温后混杂纤维混凝土抗压强度计算模型,为纤维混凝土结构的抗火设计及灾后处理提供了理论依据。  相似文献   

20.
采用φ100 mm分离式霍普金森压杆(split Hopkinson pressure bar,简称SHPB)试验装置,分别对常温和经历200、400、600、800℃高温作用后的混凝土进行了冲击压缩试验,分析了高温和应变率对混凝土动态压缩力学性能的影响,并对其关系进行了拟合。结果表明:经历不同温度作用后的混凝土动态抗压强度、峰值应变以及比能量吸收都表现出较强的应变率效应。高温对混凝土动态力学性能影响显著,400℃是混凝土各项力学指标发生转折的温度:动态抗压强度、比能量吸收在400℃时回升至与常温接近,在400℃后又迅速下降;峰值应变在400℃以后增加明显,并随着应变率的提高而迅速增加。混凝土经400℃以上高温作用后,虽然强度损失严重,但在冲击荷载作用下,尤其是在较高应变率下,仍表现出良好的抗冲击韧性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号