首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S 5627 is a synthetic analogue of chlorogenic acid. S 5627 is a potent linear competitive inhibitor of glucose 6-phosphate (Glc-6-P) hydrolysis by intact microsomes (Ki = 41 nM) but is without effect on the enzyme in detergent- or NH4OH-disrupted microsomes. 3H-S 5627 was synthesized and used as a ligand in binding studies directed at characterizing T1, the Glc-6-P transporter. Binding was evaluated using Ca2+-aggregated microsomes, which can be sedimented at low g forces. Aside from a modest reduction in K values for both substrate and S 5627, Ca2+ aggregation had no effect on glucose-6-phosphatase (Glc-6-Pase). Scatchard plots of binding data are readily fit to a simple "two-site" model, with Kd = 21 nM for the high affinity site and Kd = 2 microM for the low affinity site. Binding to the high affinity site was competitively blocked by Glc-6-P (Ki = 9 microM), whereas binding was unaffected by mannose-6-phosphate, Pi, and PPi and only modestly depressed by 2-deoxy-D-glucose 6-phosphate, a poor substrate for Glc-6-Pase in intact microsomes. Thus the high affinity 3H-S 5627 binding site fits the criteria for T1. Permeabilization of the membrane with 0.3% (3-[(chloramidopropyl)-dimethylammonio]-1-propanesulfonate) activated Glc-6-Pase and broadened its substrate specificity, but it did not significantly alter the binding of 3H-S 5627 to the high affinity sites or the ability of Glc-6-P to block binding. These data demonstrate unequivocally that two independent Glc-6-P binding sites are involved in the hydrolysis of Glc-6-P by intact microsomes. The present findings are the strongest and most direct evidence to date against the notion that the substrate specificity and the intrinsic activity of Glc-6-Pase in native membranes are determined by specific conformational constraints imposed on the enzyme protein. These data constitute compelling evidence for the role of T1 in Glc-6-Pase activity.  相似文献   

2.
Glucose-6-phosphatase (G6Pase) catalyzes the hydrolysis of glucose 6-phosphate (Glu-6-P) to free glucose and, as the last step in gluconeogenesis and glycogenolysis in liver, is thought to play an important role in glucose homeostasis. G6Pase activity appears to be conferred by a set of proteins localized to the endoplasmic reticulum, including a glucose-6-phosphate translocase, a G6Pase phosphohydrolase or catalytic subunit, and glucose and inorganic phosphate transporters in the endoplasmic reticulum membrane. In the current study, we used a recombinant adenovirus containing the cDNA encoding the G6Pase catalytic subunit (AdCMV-G6Pase) to evaluate the metabolic impact of overexpression of the enzyme in primary hepatocytes. We found that AdCMV-G6Pase-treated liver cells contain significantly less glycogen and Glu-6-P, but unchanged UDP-glucose levels, relative to control cells. Further, the glycogen synthase activity state was closely correlated with Glu-6-P levels over a wide range of glucose concentrations in both G6Pase-overexpressing and control cells. The reduction in glycogen synthesis in AdCMV-G6Pase-treated hepatocytes is therefore not a function of decreased substrate availability but rather occurs because of the regulatory effects of Glu-6-P on glycogen synthase activity. We also found that AdCMV-G6Pase-treated-cells had significantly lower rates of lactate production and [3-3H]glucose usage, coupled with enhanced rates of gluconeogenesis and Glu-6-P hydrolysis. We conclude that overexpression of the G6Pase catalytic subunit alone is sufficient to activate flux through the G6Pase system in liver cells. Further, hepatocytes treated with AdCMV-G6Pase exhibit a metabolic profile resembling that of liver cells from patients or animals with non-insulin-dependent diabetes mellitus, suggesting that dysregulation of the catalytic subunit of G6Pase could contribute to the etiology of the disease.  相似文献   

3.
Exposure of rat liver microsomes to ascorbic acid/Fe(2+) caused decreases in the membrane-bound glucose-6-phosphate (G-6-Pase) activity and the protein thiols after a short lag period (4 min). Under the same conditions, the production of thiobarbituric acid-reactive substances and fluorescent products was also initiated from 4 min after the start of the treatment, although conjugated diene was formed immediately on incubation of the microsomes with ascorbic acid/Fe(2+). After centrifugation of the treated microsomes, the fluorescent products and the enzyme activity remained in the membrane fraction. The results of kinetic studies of the enzyme activity indicated that ascorbic acid/Fe(2+)-induced inhibition of the enzyme activity is mainly due to an increased Km value for the substrate. A decreased activity of the microsomal G-6-Pase was also observed when the microsomes were incubated with aldehydes such as malondialdehyde, n-heptaldehyde, acetaldehyde, and trans-2-nonenal. However, loss of protein thiols was detected only upon treatment of the microsomes with trans-2-nonenal. Glucose-6-phosphate (G-6-P)effectively prevented ascorbic acid/Fe(2+)- or trans-2-nonenal-induced inhibition of the enzyme activity, but the substrate failed to protect the protein thiols in both systems. The results of fluorescence anisotropy measurements of diphenylhexatriene-labeled microsomes suggested that changes in the lipid dynamics are not directly related to peroxidation- mediated inhibition of the enzyme activity. Based on these results, a possible reason for the inhibition of the microsomal G-6-Pase activity associated with ascorbic acid/Fe(2+) treatment is discussed.  相似文献   

4.
Fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase (Fru-6-P, 2-kinase/Fru-2,6-Pase) is a bifunctional enzyme, catalyzing the interconversion of beta-D-fructose- 6-phosphate (Fru-6-P) and fructose-2,6-bisphosphate (Fru-2,6-P2) at distinct active sites. A mutant rat testis isozyme with an alanine replacement for the catalytic histidine (H256A) in the Fru-2,6-Pase domain retains 17% of the wild type activity (Mizuguchi, H., Cook, P. F., Tai, C-H., Hasemann, C. A., and Uyeda, K. (1998) J. Biol. Chem. 274, 2166-2175). We have solved the crystal structure of H256A to a resolution of 2. 4 A by molecular replacement. Clear electron density for Fru-6-P is found at the Fru-2,6-Pase active site, revealing the important interactions in substrate/product binding. A superposition of the H256A structure with the RT2K-Wo structure reveals no significant reorganization of the active site resulting from the binding of Fru-6-P or the H256A mutation. Using this superposition, we have built a view of the Fru-2,6-P2-bound enzyme and identify the residues responsible for catalysis. This analysis yields distinct catalytic mechanisms for the wild type and mutant proteins. The wild type mechanism would lead to an inefficient transfer of a proton to the leaving group Fru-6-P, which is consistent with a view of this event being rate-limiting, explaining the extremely slow turnover (0. 032 s-1) of the Fru-2,6-Pase in all Fru-6-P,2-kinase/Fru-2,6-Pase isozymes.  相似文献   

5.
Protein farnesyltransferase (FTase) is a zinc metalloenzyme that performs a post-translational modification on many proteins that is critical for their function. The importance of cysteine residues in FTase activity was investigated using cysteine-specific reagents. Zinc-depleted FTase (apo-FTase), but not the holoenzyme, was completely inactivated by treatment with N-ethylmaleimide (NEM). Similar effects were detected after treatment of the enzyme with iodoacetamide. The addition of zinc to apo-FTase protects it from inactivation by NEM. These findings indicated the presence of specific cysteine residue(s), potentially located at the zinc binding site, that are required for FTase activity. We performed a selective labeling strategy whereby the cysteine residues exposed upon removal of zinc from the enzyme were modified with [3H]NEM. The enzyme so modified was digested with trypsin, and four labeled peptides were identified and sequenced, one peptide being the major site of labeling and the remaining three labeled to lesser extents. The major labeled peptide contained a radiolabeled cysteine residue, Cys299, that is in the beta subunit of FTase and is conserved in all known protein prenyltransferases. This cysteine residue was changed to both alanine and serine by site-directed mutagenesis, and the mutant proteins were produced in Escherichia coli and purified. While both mutant proteins retained the ability to bind farnesyl diphosphate, they were found to have lost essentially all catalytic activity and ability to bind zinc. These results indicate that the Cys299 in the beta subunit of FTase plays a critical role in catalysis by the enzyme and is likely to be one of the residues that directly coordinate the zinc atom in this enzyme.  相似文献   

6.
By using a rapid procedure of isolation of microsomes, we have shown that the liver glucose-6-phosphatase activity was lowered by about 30% (p < 0.001) after refeeding for 360 min rats previously unfed for 48 h, whereas the amount of glucose-6-phosphatase protein was not lowered during the same time. The amount of the regulatory subunit (p85) and the catalytic activity of phosphatidylinositol 3-kinase (PI3K) were higher by a factor of 2.6 and 2.4, respectively (p < 0.01), in microsomes from refed as compared with fasted rats. This resulted from a translocation process because the total amount of p85 was the same in the whole liver homogenates from fasted and refed rats. The amount of insulin receptor substrate 1 (IRS1) was also higher by a factor of 2.6 in microsomes from refed rats (p < 0. 01). Microsome-bound IRS1 was only detected in p85 immunoprecipitates. These results strongly suggest that an insulin-triggered mechanism of translocation of PI3K onto microsomes occurs in the liver of rats during refeeding. This process, via the lipid products of PI3K, which are potent inhibitors of glucose-6-phosphatase (Mithieux, G., Danièle, N., Payrastre, B., and Zitoun, C. (1998) J. Biol. Chem. 273, 17-19), may account for the inhibition of the enzyme and participate to the inhibition of hepatic glucose production occurring in this situation.  相似文献   

7.
The Type I isozyme of mammalian hexokinase has evolved by a gene duplication-fusion mechanism, with resulting internal duplication of sequence and ligand binding sites. However, 1:1 binding stoichiometry indicates that only one of these is available for binding the product inhibitor, Glc-6-P; the location of that site, in the N- or C-terminal half, remains under debate. Recent structural studies (Aleshin et al., Structure 6, 39-50, 1998; Mulichak et al., Nature Struct. Biol. 5, 555-560, 1998) implicated Asp 84 or its analog in the C-terminal half, Asp 532, in binding of Glc-6-P. Zeng et al. (Biochemistry 35, 13157-13164, 1996) demonstrated that mutation of Asp 532 to Lys or Glu did not affect inhibition by the Glc-6-P analog, 1,5-anhydroglucitol-6-P. These same mutations, as well as mutation to Ala, at the Asp 84 position are now shown to result in increased Ki for 1,5-anhydroglucitol-6-P. The ability of Pi to antagonize inhibition by the Glc-6-P analog is severely diminished or abolished by these mutations, suggesting that antagonism is dependent on precise positioning of the inhibitory hexose 6-phosphate. The structure of the enzyme complexed with Glc and Pi has been determined, and shows that Pi occupies the same site as the 6-phosphate group in the complex with Glc-6-P. Thus, antagonism between these ligands results from competition for a common anion binding site in the N-terminal half.  相似文献   

8.
The terminal step in hepatic gluconeogenesis is catalyzed by glucose-6-phosphatase, an enzyme activity residing in the endoplasmic reticulum and consisting of a catalytic subunit (glucose-6-phosphatase (G6Pase)) and putative accessory transport proteins. We show that Zucker diabetic fatty rats (fa/fa), which are known to exhibit impaired suppression of hepatic glucose output, have 2.4-fold more glucose-6-phosphatase activity in liver than lean controls. To define the potential contribution of increased hepatic G6Pase to development of diabetes, we infused recombinant adenoviruses containing the G6Pase cDNA (AdCMV-G6Pase) or the beta-galactosidase gene into normal rats. Animals were studied by one of three protocols as follows: protocol 1, fed ad libitum for 7 days; protocol 2, fed ad libitum for 5 days, fasted overnight, and subjected to an oral glucose tolerance test; protocol 3, fed ad libitum for 4 days, fasted for 48 h, subjected to oral glucose tolerance test, and then allowed to refeed overnight. Hepatic glucose-6-phosphatase enzymatic activity was increased by 1.6-3-fold in microsomes isolated from AdCMV-G6Pase-treated animals in all three protocols, and the resultant metabolic profile was similar in each case. AdCMV-G6Pase-treated animals exhibited several of the abnormalities associated with early stage non-insulin-dependent diabetes mellitus, including glucose intolerance, hyperinsulinemia, decreased hepatic glycogen content, and increased peripheral (muscle) triglyceride stores. These animals also exhibited significant decreases in circulating free fatty acids and triglycerides, changes not normally associated with the disease. Our studies show that overexpression of G6Pase in liver is sufficient to perturb whole animal glucose and lipid homeostasis, possibly contributing to the development of metabolic abnormalities associated with diabetes.  相似文献   

9.
Glucose-1,6-P2 synthase of beef brain which catalyzes the formation of glucose-1,6-P2 and glycerate-3-P from glycerate-1,3-P2 and glucose-1-P has been purified 700-fold with an overall recovery of 19%. The purification procedure involves an ammonium sulfate fractionation of the crude extract, DE52 and hydroxylapatite column chromatography and isoelectric focusing. The isolated enzyme appears to be homogeneous by sodium dodecyl sulfate gel electrophoresis. Its molecular weight is estimated to be about 70,000 by gel filtration on Sephadex G-200 which agrees with the value obtained by sodium dodecyl sulfate gel electrophoresis. A phosphoryl enzyme intermediate in the catalytic reaction is indicated by the following evidence: glycerate-1,3-P2[1-32P] labels the enzyme. The label is removed by acceptor substrates such as glucose-1-P. Using a rapid quenching device at 23 degrees and pH 8.0, the first order rate constant for phosphorylation of the enzyme is 20 s-1, compared with an overall rate with the best acceptor, glucose-1-P, of 19 s-1. Dephosphorylation by glucose-1-P is at 37 s-1. Mg2+ is required for both phosphoryl transfers and the overall reaction. In the complete reaction the fraction of enzyme that is phosphorylated depends on the concentrations of glycerate-1,3-P2 and the concentration and nature of the acceptor in a way that could be predicted from the steady state parameters, the Km values, and the kinetic constants observed for the single turnover. Reciprocal plots of initial rates as a function of both substrate concentrations are families of parallel lines. The 32P-labeled phosphoryl enzyme intermediate was found to be acid-stable and somewhat alkaline-labile. Phosphoserine was identified from the partial acid hydrolysate of a protease digest of [32P] phosphoryl enzyme by two-dimensional thin layer chromatography.  相似文献   

10.
The physical basis of the unusually low pKa values of an active site cysteine thiol group in proteins with the thioredoxin fold is unknown. The electrostatic field associated with an alpha-helix pointing with its N terminus towards the cysteine residue has been implicated to lower the thiol pKa value by up to 5 pH units in glutaredoxin and DsbA. Here, the influence of the presence of an alpha-helical conformation on the ionisation of a cysteine thiol group located at or near the helix terminus is investigated in highly helical synthetic peptides with the generic sequence Ac-AAAAAAAAARAAAARAAAARAA-(NH2). The thiol pKa values have been determined by monitoring the pH dependence of the absorbance at 240 nm, of the alpha-helix content measured by the mean residue ellipticity at 222 nm, and of the chemical shifts of protons close to the sulphur atom of the cysteine residue. The favourable interaction between the thiolate anion at the N terminus and the alpha-helix decreases the thiol pKa value by up to 1.6 pH units when compared to a normal thiol pKa value measured in an unfolded control peptide, corresponding to a stabilisation energy of 2.1 kcal/mol. At the C terminus, the thiol pKa value is increased, but by only 0.2 pH units. The observations are consistent with an interaction of the alpha-helix dipole with the cysteine thiolate anion, involving both its charge and hydrogen-bonding. Subtle conformational effects in different model peptides appear to influence the ionisation of the thiol group significantly, with an N terminal Cys-Pro sequence having the most favourable interaction with the alpha-helix.  相似文献   

11.
The SNF1 gene encodes a protein kinase necessary for expression of glucose-repressible genes and for the synthesis of the storage polysaccharide glycogen. From a genetic screen, we have found that mutation of the PFK2 gene, which encodes the beta-subunit of 6-phosphofructo-1-kinase, restores glycogen accumulation in snf1 cells. Loss of PFK2 causes elevated levels of metabolites such as glucose-6-P, hyperaccumulation of glycogen, and activation of glycogen synthase, whereas glucose-6-P is reduced in snf1 cells. Other mutations that increase glucose-6-P, deletion of PFK1, which codes for the alpha-subunit of 6-phosphofructo-1-kinase, or of PGI1, the phosphoglucoisomerase gene, had similar effects on glycogen metabolism as did pfk2 mutants. We propose that elevated glucose-6-P mediates the effects of these mutations on glycogen storage. Glycogen synthase kinase activity was reduced in extracts from pfk2 cells but was restored to that of wild type if the extract was gel-filtered to remove small molecules. Also, added glucose-6-P inhibited the glycogen synthase kinase activity in extracts from wild-type cells, half-maximally at approximately 2 mM. We suggest that glucose-6-P controls glycogen synthase activity by two separate mechanisms. First, glucose-6-P is a direct activator of glycogen synthase, and second, it controls the phosphorylation state of glycogen synthase by inhibiting a glycogen synthase kinase.  相似文献   

12.
The intrinsic fluorescence of homogeneous castor oil seed cytosolic fructose-1,6-bisphosphatase (FBPasec) was used as an indicator of conformational changes due to ligand binding. Binding of the substrate and the inhibitor fructose-2,6-bisphosphate (F-2,6-P2) was quantitatively compared to their respective kinetic effects on enzymatic activity. There are two distinct types of substrate interaction with FBPasec, corresponding to catalytic and inhibitory binding, respectively. Inhibitory substrate binding shares several characteristics with F-2,6-P2 binding which indicates that both ligands bind at the same site. However, F-2,6-P2 does not prevent fluorescence transitions attributed to catalytic substrate binding. The marked synergistic inhibition of FBPasec by AMP and F-2,6-P2 appears to arise via AMP's promotion of F-2,6-P2 binding. Based on the X-ray crystal structure of porcine kidney FBPase our modelling studies suggest the existence of a distinct F-1,6-P2/F-2,6-P2 inhibitory binding site which partially overlaps with the enzyme's catalytic site. We propose that a pronounced allosteric transition mediated by AMP binding increases access of F-1,6-P2 and F-2,6-P2 to this common inhibitory binding site.  相似文献   

13.
The last steps of cysteine synthesis in plants involve two consecutive enzymes. The first enzyme, serine acetyltransferase, catalyses the acetylation of L-serine in the presence of acetyl-CoA to form O-acetylserine. The second enzyme, O-acetylserine (thiol) lyase, converts O-acetylserine to L-cysteine in the presence of sulfide. We have, in the present work, over-produced in Escherichia coli harboring various type of plasmids, either a plant serine acetyltransferase or this enzyme with a plant O-acetylserine (thiol) lyase. The free recombinant serine acetyltransferase (subunit mass of 34 kDa) exhibited a high propensity to form high-molecular-mass aggregates and was found to be highly unstable in solution. However, these aggregates were prevented in the presence of O-acetylserine (thiol) lyase (subunit mass of 36 kDa). Under these conditions homotetrameric serine acetyltransferase associated with two molecules of homodimeric O-acetylserine (thiol) lyase to form a bienzyme complex (molecular mass approximately 300 kDa) called cysteine synthase containing 4 mol pyridoxal 5'-phosphate/mol complex. O-Acetylserine triggered the dissociation of the bienzyme complex, whereas sulfide counteracted the action of O-acetylserine. Protein-protein interactions within the bienzyme complex strongly modified the kinetic properties of plant serine acetyltransferase: there was a transition from a typical Michaelis-Menten model to a model displaying positive kinetic co-operativity with respect to serine and acetyl-CoA. On the other hand, the formation of the bienzyme complex resulted in a very dramatic decrease in the catalytic efficiency of bound O-acetylserine (thiol) lyase. The latter enzyme behaved as if it were a structural and/or regulatory subunit of serine acetyltransferase. Our results also indicated that bound serine acetyltransferase produces a build-up of O-acetylserine along the reaction path and that the full capacity for cysteine synthesis can only be achieved in the presence of a large excess of free O-acetylserine (thiol) lyase. These findings contradict the widely held belief that such a bienzyme complex is required to channel the metabolite intermediate O-acetylserine.  相似文献   

14.
Deficiency of glucose-6-phosphatase (G6Pase), an endoplasmic reticulum transmembrane glycoprotein, causes glycogen storage disease type 1a. We have recently shown that human G6Pase contains an odd number of transmembrane segments, supporting a nine-transmembrane helical model for this enzyme. Sequence analysis predicts the presence of three potential asparagine (N)-linked glycosylation sites, N96TS, N203AS, and N276SS, conserved among mammalian G6Pases. According to this model, Asn96, located in a 37-residue luminal loop, is a potential acceptor for oligosaccharides, whereas Asn203 and Asn276, located in a 12-residue cytoplasmic loop and helix 7, respectively, would not be utilized for this purpose. We therefore characterized mutant G6Pases lacking one, two, or all three potential N-linked glycosylation sites. Western blot and in vitro translation studies showed that G6Pase is glycosylated only at Asn96, further validating the nine-transmembrane topology model. Substituting Asn96 with an Ala (N96A) moderately reduced enzymatic activity and had no effect on G6Pase synthesis or degradation, suggesting that oligosaccharide chains do not play a major role in protecting the enzyme from proteolytic degradation. In contrast, mutation of Asn276 to an Ala (N276A) destabilized the enzyme and markedly reduced enzymatic activity. We present additional evidence suggesting that the integrity of transmembrane helices is essential for G6Pase stability and catalytic activity.  相似文献   

15.
A novel thioredoxin-linked thiol peroxidase (Px) from Escherichia coli has been reported previously (M. K. Cha, H. K. Kim, and I. H. Kim, J. Biol. Chem. 270:28635-28641, 1995). In an attempt to perform physiological and biochemical characterizations of the thiol Px, a thiol Px null (tpx) mutant and a functional-residue mutant of thiol Px were produced. The tpx mutant was viable in aerobic culture but grew more slowly than the wild-type cells. The difference in growth rate became more pronounced when oxidative-stress-inducing reagents, such as peroxides and paraquat, were added to the cultures. The viability of the individual tpx mutant under oxidative stress was much lower than that of wild-type cells. tpx mutants growing aerobically respond to paraquat with a sixfold greater induction of Mn-superoxide dismutase than that of the wild-type cells. The deduced amino acid sequence of the thiol Px was found to be from 42 to 72% identical to the sequences of proteins from Haemophilus influenzae (ToxR regulon), Vibrio cholerae (ToxR regulon), and three kinds of streptococci (coaggregation-mediating adhesins), suggesting that they all belong to a new thiol Px family. Alignment of the amino acid sequences of the thiol Px family members showed that one cysteine, which corresponds to Cys-94 in E. coli thiol Px, is perfectly conserved. The substitution of serine for this cysteine residue resulted in complete loss of Px activity. These results suggest that the members of the thiol Px family, including E. coli thiol Px, have a functional cysteine residue and function in vivo as peroxidases.  相似文献   

16.
The arrangement of the N-terminal part of subunit 4 (subunit b) has been studied by the use of mutants containing cysteine residues in a loop connecting the two N-terminal postulated membrane-spanning segments. Labelling of the mutated subunit 4 by the fluorescent probe N-(7-(dimethylamino)-4-methyl-3-coumarinyl)maleimide revealed that the sulfhydryl groups were modified upon incubation of intact mitochondria. In addition, the nonpermeant sulfhydryl reagent 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid prevented the 3-(N-maleimidylpropionyl)biocytin labeling of subunit 4D54C, thus showing a location of this residue in the intermembrane space. Cross-linking experiments revealed the proximity of subunits 4 and f. In addition a disulfide bridge between subunit 4D54C and subunit 6 was evidenced, thus demonstrating near-neighbor relationships of the two subunits and a location of the N-terminal part of the mitochondrially-encoded subunit 6 in the intermembrane space.  相似文献   

17.
Glycogen-storage diseases type I (GSD type I) are due to a deficiency in glucose-6-phosphatase, an enzymatic system present in the endoplasmic reticulum that plays a crucial role in blood glucose homeostasis. Unlike GSD type Ia, types Ib and Ic are not due to mutations in the phosphohydrolase gene and are clinically characterized by the presence of associated neutropenia and neutrophil dysfunction. Biochemical evidence indicates the presence of a defect in glucose-6-phosphate (GSD type Ib) or inorganic phosphate (Pi) (GSD type Ic) transport in the microsomes. We have recently cloned a cDNA encoding a putative glucose-6-phosphate translocase. We have now localized the corresponding gene on chromosome 11q23, the region where GSD types Ib and Ic have been mapped. Using SSCP analysis and sequencing, we have screened this gene, for mutations in genomic DNA, from patients from 22 different families who have GSD types Ib and Ic. Of 20 mutations found, 11 result in truncated proteins that are probably nonfunctional. Most other mutations result in substitutions of conserved or semiconserved residues. The two most common mutations (Gly339Cys and 1211-1212 delCT) together constitute approximately 40% of the disease alleles. The fact that the same mutations are found in GSD types Ib and Ic could indicate either that Pi and glucose-6-phosphate are transported in microsomes by the same transporter or that the biochemical assays used to differentiate Pi and glucose-6-phosphate transport defects are not reliable.  相似文献   

18.
F1F0-ATP synthases utilize protein conformational changes induced by a transmembrane proton gradient to synthesize ATP. The allosteric cooperativity of these multisubunit enzymes presumably requires numerous protein-protein interactions within the enzyme complex. To correlate known in vitro changes in subunit structure with in vivo allosteric interactions, we introduced the beta subunit of spinach chloroplast coupling factor 1 ATP into a bacterial F1 ATP synthase. A cloned atpB gene, encoding the complete chloroplast beta subunit, complemented a chromosomal deletion of the cognate uncD gene in Escherichia coli and was incorporated into a functional hybrid F1 ATP synthase. The cysteine residue at position 63 in chloroplast beta is known to be located at the interface between alpha and beta subunits and to be conformationally coupled, in vitro, to the nucleotide binding site > 40 A away. Enlarging the side chain of chloroplast coupling factor 1 beta residue 63 from Cys to Trp blocked ATP synthesis in vivo without significantly impairing ATPase activity or ADP binding in vitro. The in vivo coupling of nucleotide binding at catalytic sites to transmembrane proton movement may thus involve an interaction, via conformational changes, between the amino-terminal domains of the alpha and beta subunits.  相似文献   

19.
The microsomal glucose-6-phosphatase enzyme is situated with its active site inside the lumen of the endoplasmic reticulum and for normal enzyme activity in vivo, transport systems are needed for the substrates and products of the enzyme. Most studies of glucose-6-phosphatase have been carried out on the liver enzyme and relatively little is known about the regulation of the kidney glucose-6-phosphatase enzyme system. Here we demonstrate that the liver and kidney glucose-6-phosphatase systems are regulated differently by dexamethasone and that dexamethasone acts on both the glucose-6-phosphatase enzyme and T1 its associated glucose-6-phosphate transport protein.  相似文献   

20.
Protein import into mitochondria involves several components of the mitochondrial outer and inner membranes as well as molecular chaperones located inside mitochondria. Here, we have investigated the effect of sulfhydryl group reagents on import of the in vitro transcribed/translated precursor of the F1 beta subunit of the ATP synthase (pF1 beta) into Solanum tuberosum mitochondria. We have used a reducing agent, dithiothreitol (DTT), a membrane-permeant alkylating agent, N-ethylmaleimide (NEM), a non-permeant alkylating agent, 3-(N-maleimidopropionyl)biocytin (MPB), an SH-group specific agent and cross-linker 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) as well as an oxidizing cross-linker, copper sulfate. DTT stimulated the mitochondrial protein import, whereas NEM, MPB, DTNB and Cu2+ were inhibitory. Inhibition by Cu2+ could be reversed by addition of DTT. The efficiency of inhibition was higher in energized mitochondrial than in non-energized. We have dissected the effect of the SH-group reagents on binding, unfolding and transport of the precursor into mitochondria. Our results demonstrated that the inhibitory effect of NEM, DTNB and Cu2+ on the efficiency of import was not due to the interaction of the SH-group reagents with import receptors. Modification of pF1 beta with NEM prior to the import resulted in stimulation of import, whereas DTNB and Cu2+ were inhibitory. NEM, MPB, DTNB and Cu2+ inhibited import of the NEM-modified pF1 beta into intact mitochondria. Import of pF1 beta through a receptor-independent bypass-route as well as import into mitoplasts were sensitive to DTT, NEM, MPB, DTNB and Cu2+ in a similar manner as import into mitochondria. As MPB does not cross the inner membrane, these results indicated that redox and conformational status of SH groups located on the outer surface of the inner mitochondrial membrane were essential for protein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号