首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
介绍了不同压下区间和压下量对Q345钢铸坯内部质量的影响。试验铸坯的中心偏析评级结果分析表明轻压下对连铸板坯中心偏析的改善效果十分明显。低倍检验结果表明压下量超过1.5mm,压下段在10、11段,试验铸坯中心偏析等级均在C1.0以下,中心疏松等级也都小于0.5。结论表明:Q345板坯较佳的动态轻压下固相率应为fs=0.6,该钢种较佳的生产条件是比水量高于0.8L/Kg,过热度低于18℃。  相似文献   

2.
板坯连铸轻压下实施过程中,合理的压下参数是影响铸坯内部质量的决定性因素。根据邯钢中碳微合金钢板坯连铸生产条件,建立凝固传热模型,结合板坯射钉试验研究,预测其凝固进程和压下位置。在此基础上,开展轻压下工业试验,分析了压下位置对铸坯中心偏析的影响。结果表明,在拉速为0.85 m/min、过热度为20~30 ℃、二冷比水量为0.59 L/kg的条件下,邯钢中碳微合金钢板坯连铸压下区间中心固相率为0.2~0.7,对应位置为16.42~21.62 m,位于7~9号扇形段内。与采用6~8号扇形段压下相比,优化方案明显改善了板坯中心偏析和疏松,东西两侧不均匀偏析和横截面V型偏析显著减弱。  相似文献   

3.
提高宽厚板连铸坯的致密度与均质度,是突破传统轧制压缩比、提高宽厚板性能及探伤合格率的重要前提和保障。连铸坯凝固末端重压下能够有效改善铸坯中心凝固缩孔、疏松、中心偏析等缺陷,是生产高品质厚板的重要手段。本研究利用Ansys有限元模拟软件,计算0.85 m/min、0.89 m/min、0.93 m/min拉速时连铸坯固相率,预测固相率的变化趋势,确定了不同拉速下凝固末端位置。考虑现场设备能力及试验安全,选取0.85 m/min作为试验拉速,在0.66~1.0固相率范围内,进行不压下、液相区压下10 mm和液相区+两相区压下20 mm三种模式下的连铸重压下试验。在试验铸坯上取样,对试样的致密度、中心偏析及铸坯组织等进行检测,并分析对比不同压下模式对铸坯内部质量的影响。结果表明:在试验拉速下,压下量在0~20 mm范围内,随着压下量的加大,铸坯致密度提高,中心偏析得到明显改善,铸坯晶粒尺寸显著细化。  相似文献   

4.
通过ANSYS软件模拟了200 mm×1600 mm不锈钢板坯连铸轻压下过程扇形段铸坏的变形,得出1#到11#扇形段辊缝的动态补偿量0.2~1.0 mm.生产应用表明,拉速0.7 m/min和0.9 m/min,压下速率0.8~1.4mm/m,总压下量1.30~4.56 mm,铸坯中心偏析均有改善,铸坯厚度与没定值之差≤0.5 mm;拉速为0.7 m/min时,未采用动态轻压下时,C、S中心偏析指数为1.30,当压下速率为1.2 mm/m,压下区间固相率20%~50%时,C、S中心偏析指数降至1.05.  相似文献   

5.
轻压下技术作为改善铸坯偏析的有效措施之一,被广泛应用于高碳钢方坯连铸中,其压下参数的选取对于轻压下技术至关重要.通过理论分析并结合其他厂的生产经验,认为压下位置在中心固相率为0.2~0.8、总压下量为4~8 mm时,轻压下效果最佳.合理地应用轻压下技术,可以有效地减轻铸坯的V型偏析、降低中心碳偏析并改善铸坯的宏观组织.  相似文献   

6.
为解决C610L连铸板坯生产过程中出现的中心质量问题,建立了二维非稳态传热数学模型对200 mm×1 500 mm连铸板坯凝固传热温度场进行模拟计算,计算结果显示铸坯凝固温度场较合理,凝固终点位置在距结晶器弯月面17.54 m处。采用射钉试验对模型计算的准确性进行验证,试验表明模拟计算结果可用于指导轻压下工艺的制定。对铸坯中心固相率在0.3~0.7,对应扇形段6~7段内实施压下,制定总压下量为4 mm。低倍检验结果表明压下方案的实施对铸坯中心质量改善效果明显,在后续生产中铸坯在线缺陷率从3.34%下降到0.89%。  相似文献   

7.
基于ANSYS软件建立了310 mm×360 mm断面大方坯连铸过程二维凝固传热数学模型,并采用窄面射钉试验及铸坯表面测温试验对模型的准确性进行了验证.通过模型研究了过热度、拉速和二冷比水量对铸坯中心固相率以及凝固坯壳分布的影响,并结合高碳耐磨球钢BU的高温拉伸试验结果,确定了最佳的拉速以及最优轻压下压下区间要求.通过工业试验对理论模型进行了验证,并分析研究了拉速对采用凝固末端电磁搅拌(F-EMS)以及凝固末端17 mm大压下量的轻压下技术生产310 mm×360 mm断面大方坯高碳耐磨球钢BU铸坯的偏析和中心缩孔的影响.结果表明:采用凝固末端电磁搅拌和轻压下复合技术,通过调整拉速优先满足轻压下压下区间要求,可显著降低中心偏析、V型偏析及中心缩孔,但如果仅达到凝固末端电磁搅拌位置要求时,则铸坯中心质量不会得到明显改善.拉速为0.52 m·min-1且轻压下压下区间铸坯中心固相率为0.30~0.75时,偏析和中心缩孔有很大程度的改善,不合理的压下量分配会引起铸坯出现内裂纹以及中心负偏析.   相似文献   

8.
黄华  徐李军  仇圣桃 《特殊钢》2016,37(6):52-55
基于有限元法,利用ANSYS软件模拟计算了高碳钢(0.73%~0.77%C)连铸板坯轻压下过程中热-机械塑性应变分布,分析了给定扇形段的压下量2 mm+2 mm,3 mm+3 mm和2 mm+2 mm+2 mm对压下区间和位置的塑性应变的影响,并通过现场试验对模拟结果进行了验证。结果表明,塑性应变模型模拟值与实测值吻合;热变形过程中,铸坯心部的等效应变最大,表面节点次之,1/4位置等效应变最小;热-机械塑性应变随着压下量和压下速率的增加而增加,3 mm+3 mm压下模式具有较好的压下效果。生产试验结果表明,采用2个扇形段(6#和7#或7#和8#)进行2.2 mm+2.3 mm轻压下铸坯较优化前3个扇形段(6#,7#和8#)1.5 mm+1.5 mm+1.5 mm轻压下铸坯中心偏析2.0级和中心疏松2.0级提高中心偏析0.5级和中心疏松0.5级,显著改善了连铸板坯的低倍质量。  相似文献   

9.
探讨了单对辊凝固末端大压下对连铸板坯内部质量的影响。研究中,分析检测了不同拉速条件下Q345D连铸坯低倍组织特征,并对铸坯中心疏松进行了定量测量。结果表明,采用大压下能够有效改善连铸坯的内部质量。拉速为0.70 m/min时,大压下15 mm相比轻压下时铸坯在宽度1/2位置、1/4位置处的中心疏松体积均明显降低。轻压下时铸坯宽度1/2、1/4位置处的中心疏松体积分别为1.73×10-7、2.68×10-7 cm3/g;大压下15 mm时铸坯宽度1/2、1/4位置处的中心疏松体积分别为5.33×10-8、-1.84×10-8cm3/g。轻压下、大压下15 mm时连铸坯中心碳偏析均较轻,但后者相对稍重,最大值分别为1.176、1.282;轻压下与大压下条件下,铸坯宽度1/4位置中心碳偏析均高于宽度1/2位置。特别地,大压下15 mm时,铸坯宽度1/2位置、1/4位置处,连铸坯中心靠外弧侧出现负偏析,最大负偏析值为0.916。  相似文献   

10.
毛敬华  帅勇  谢贵强  王亚涛 《钢铁》2019,54(8):64-69
 采用连铸工艺流程生产特厚钢板具有低能耗、低排放和高效率的显著优势。然而,连铸坯中心偏析与疏松、内部大尺寸夹杂物未能得到较好的控制,是导致厚度不小于100 mm特厚板探伤不合格的主要原因。鉴于此,研发了特厚板连铸坯内部夹杂物去除技术与中心偏析、疏松控制技术,给出了利于夹杂物充分上浮去除的铸机最佳垂直段高度,以及改善铸坯中心偏析与疏松缺陷的凝固末端压下率参数。应用结果表明,上述技术措施取得了明显效果,生产的特厚板坯质量良好,采用连铸特厚板坯轧制出了优质特厚板。  相似文献   

11.
 研究了压下位置、压下率和压下量等轻压下参数对连铸板坯半宏观偏析的影响。研究结果表明,中心线偏析由相互独立的半宏观偏析点组成,半宏观偏析面积比与中心最大碳偏析比有良好的正相关关系,因此改善连铸板坯中心线偏析的关键在于降低半宏观偏析面积比。轻压下对于降低半宏观偏析面积比有重要影响。工业试验结果表明,当压下位置位于固相率大于0.75、压下率为1.2mm/m以及压下量为4.5mm时,能够显著降低半宏观偏析面积比,从而改善连铸板坯的中心线偏析。  相似文献   

12.
 对首秦2号板坯连铸机轻压下工艺进行了细致的研究。通过连铸坯射钉试验对首秦2号连铸机二级冷却模型进行了校验;通过不同轻压下率试验条件下连铸坯中心偏析的程度确定了合理的、能够有效改善连铸坯中心偏析的轻压下率;通过连铸坯厚度方向不同部位碳硫元素的分析对轻压下工艺改善前后连铸坯中心偏析度进行了对比。结果表明:首秦2号连铸机二级冷却模型能够准确反映连铸坯凝固末端的位置。在拉速为0.70m/min的连铸工艺条件下,320mm厚连铸坯轻压下段为第9和第10段,合理的轻压下率应该保持在0.85~1.0mm/m之间。采用合理的轻压下工艺后,连铸坯中心偏析得到了明显改善,满足了首秦高品质中厚板对连铸坯内部质量的严格要求。  相似文献   

13.
于小春  倪修华 《特殊钢》2019,40(5):28-30
连铸板坯的中心偏析是造成精冲钢带状组织的重要原因。动态轻压下技术是改善连铸板坯中心偏析的有效手段。本文通过射钉试验,准确测定了230 mm连铸板坯凝固末端的位置,为制定合理的轻压下工艺参数提供了重要参考。在轻压下工艺改进前(9、10段,总压下量7.5 mm),典型精冲钢的板坯中心偏析级别在曼标M2.4以上;通过改进轻压下位置和压下量参数后(8、9段,总压下量10 mm),连铸板坯的中心偏析得到明显改善,板坯低倍偏析曼标控制在M2.0以内,精冲钢用户的带状组织也得到有效控制。  相似文献   

14.
针对连铸坯轧制特厚板超声波探伤不合格的问题,对连铸坯及钢板取样进行热酸浸低倍组织检验,并对钢板样进行金相分析。结果表明,连铸坯本身有较严重的中心疏松和中心偏析,钢板有疏松残留,偏析严重处伴生微裂纹。通过提高钢液纯净度,投用连铸电磁搅拌(S-EMS),优化轻压下工艺,增加单道次压下量等措施,保证了特厚板质量,探伤合格率达到98.97%。  相似文献   

15.
张婷婷 《冶金分析》2017,37(5):19-24
针对轻压下两种不同加压分配位置,采用原位统计分布分析方法对两炉管线钢板坯的偏析和致密度进行了对比分析。方法定量检测出了管线钢板坯的偏析和疏松部位及变化情况,从板坯不同部位碳元素分布和致密度的二维等高图中,可以直观地呈现出板坯的缺陷和疏松情况。实验结果表明,连铸过程中,在钢水成分、中包温度、过热度、拉速、压下量均相同,压下分配位置不同的条件下,试验样品中碳元素的偏析和致密度有所不同,不同的压下位置能够改善板坯偏析和致密度,进而提高板坯的质量。  相似文献   

16.
摘要:针对轴承钢GCr15连铸小方坯断面的中心缩孔、中心偏析等常见内部质量缺陷,确定了轻压下区间并进行压下试验。通过对压下试验结果的分析,得到了轻压下工艺参数与铸坯中心疏松、中心偏析的关系。试验结果表明,采用凝固末端轻压下技术后轴承钢内部质量得到明显的改善,可将铸坯中心缩孔级别控制在1.0级以下,而不合理的压下量分配会导致铸坯出现压下裂纹。1号、2号拉矫辊分配较小的压下量可有效减少铸坯的压下裂纹并改善中心疏松以及中心偏析。  相似文献   

17.
介绍了不同的动态轻压下位置对铸坯内部质量的影响.通过对试验铸坯横断面的低倍枝晶检验和沿铸坯厚度方向上的化学成分分析,发现动态轻压下对连铸板坯中心偏析的改善效果十分明显.枝晶检验结果表明, 5块X70管线钢试验铸坯中心偏析等级均在B0.5以下,中间裂纹和三角区裂纹等级也都小于0.5.虽然5块铸坯的轻压下位置有所不同,但铸坯内部质量均为良好,达到内控标准.同时根据化学成分分析结果计算元素沿厚度方向上的偏析比发现:浇铸管线钢板坯较佳的动态轻压下位置应为fs=0.5~0.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号