首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 154 毫秒
1.
为解决攀钢熔分深还原电炉冶炼钒钛磁铁矿金属化球团过程中出现的泡沫化严重的问题,采取提高炉渣二元碱度、控制金属化球团w(FeO)和残碳量、减少低温电炉加料量等措施,使炉内泡沫化严重的现象得到控制,保证了冶炼过程的连续进行。同时钒还原率提高了13%,冶炼时间缩短了45min。  相似文献   

2.
参照AOD炉冶炼不锈钢的工艺模式,开发AOD炉进行铁水脱硫的工艺,以满足脱硫设备出现故障后脱硫铁水的供应。通过实践表明:AOD炉进行铁水脱硫可实现将w(S)脱至0.002 0%以下,并利用离线扒渣设备扒除含硫渣,防止转炉冶炼过程中回硫;为提高脱硫效率,铁水脱硫终点温度控制在1 350~1 400℃,温度不足采用硅铁弥补,渣量20~30 kg/t,还原后w(Si)控制在0.2%~0.4%,还原阶段侧吹搅拌强度控制在0.4~0.6 m~3/(t·min),搅拌时间5 min。  相似文献   

3.
钒钛磁铁精矿预还原球团电炉冶炼研究   总被引:1,自引:1,他引:0       下载免费PDF全文
对攀西钒钛磁铁精矿球团电炉冶炼进行研究,通过还原剂作用和优化的熔融还原电炉参数,可实现钒钛磁铁精矿球团冶炼过程中铁和钒钛的分离回收,其中钒被还原后富集到生铁中,而钛富集在电炉冶炼渣中。当渣型碱度(CaO/SiO2)为1.1时,还原球团的金属化率为70%,在1 500℃熔融还原10min后,生铁中铁品位为97.96%,铁回收率可达98.81%,生铁中含钒0.36%,钒回收率可达62.42%,试验过程中炉渣流动性好。  相似文献   

4.
摘要:为了对转炉提钒冶炼过程含钒炉渣熔化和流动性进行合理的控制,采用半球点法和内旋转黏度法分别测试了含钒炉渣熔化温度和黏度,采用XRD测试了含钒炉渣的物相,并采用综合碱度(BI′)反映渣中酸碱氧化物平衡关系。结果表明,在FeO质量分数一定的条件下,随着w(SiO2)/w(V2O3)增大,综合碱度由BI′>1单调下降至BI′<1,含钒炉渣熔化温度先降低后升高;随着FeO质量分数的增加,熔化温度最低点对应的w(SiO2)/w(V2O3)增大。随着w(SiO2)/w(V2O3)增大,黏度随温度变化的趋势变缓,高温熔融态含钒炉渣黏度增大,低温阶段黏度减小。综合考虑黏度对钢渣界面反应和钒渣流失的影响,FeO质量分数为44%时含钒炉渣w(SiO2)/w(V2O3)应控制为0.7。  相似文献   

5.
曾建华  潘红  冯远超  张敏  杨森祥  李利刚 《炼钢》2013,29(1):32-35,56
针对采用含钒铁水生产无取向电工钢存在的铁水脱硫率低、转炉冶炼过程回硫量大、成品硫含量偏高的问题,通过对含钒钛铁水脱硫,减少转炉冶炼过程回硫以及RH脱硫技术等方面的研究,大幅度降低了电工钢成品硫含量.生产表明钢中w(S)=0.001 9%~0.006 9%,平均为0.004 2%;w(S)≤0.008%的比例达到了100%,且w(S)≤0.005%的比例也达到了91.43%.  相似文献   

6.
基于转底炉直接还原工艺的钒钛磁铁矿综合利用试验研究   总被引:1,自引:0,他引:1  
通过大量试验研究,提出了"钒钛磁铁矿转底炉直接还原—电炉深还原—含钒铁水提钒—含钛炉渣提钛"工艺流程。铁、钒、钛元素回收率分别达到90.77%、43.82%和72.65%。通过试验室和工业试验研究,解决了钒钛磁铁矿直接还原金属化率低、电炉深还原钒还原率低、高硅铁水提钒、高镁铝含钛炉渣提钛等技术难题,获得了直接还原金属化率大于90%,电炉深还原钒还原率大于80%,钒渣提钒钒回收率大于65%,钛渣提钛钛回收率大于75%的良好效果,分别获得了符合电炉炼钢要求的低碳生铁、符合YB/T5304-2006要求的片状V2O5和达到PTA121质量要求的钛白产品。  相似文献   

7.
林文养 《钢铁钒钛》1993,14(1):14-18
针对攀枝花钒钛磁铁矿钢铁冶炼新流程渣深还原方案,目前存在的终点控制技术问题及冶炼电耗高、含钒铁水中硅、钛等杂质高等问题,对冶炼工艺进行改进完善,以达到降低冶炼电耗、控制含钒铁水中硅钛夹杂含量的目的。为此,提出了熔池留铁操作的钒累积法还原新工艺。  相似文献   

8.
铸造生铁和炼钢生铁的根本区别在于硅含量.对铸造生铁和炼钢生铁的冶炼来说,操作制度上的主要差别也在于关于硅还原的考虑.如何使Si顺利而有效地还原,是高炉冶炼铸造铁必须解决的问题. 生铁中的硅来自炉料.要使铁水含硅较高,一方面要从炉顶多加高SiO_2炉料(如很多厂从炉顶加硅石);另一方面需要维持较高的炉缸温度.这样必将导致渣量增大,能耗增加.而从风口喷入硅石粉冶炼高硅铸造铁,可有效促进硅的还原,提高SiO_2利用率,从而可降低高炉燃料比. 一、理论分析研究成果表明:高炉内SiO_2首先是气化为SiO,然后在滴落带内气相SiO与铁滴中〔C〕作用,还原出〔Si〕,同时铁水Si含量  相似文献   

9.
介绍了针对AOD精炼炉从含钒铁水中扒出的钒渣,提出了一套倾动电炉冶炼制取硅钒合金工艺,详细叙述了冶炼原理、电炉参数及操作等,并对除尘系统进行了具体设计.  相似文献   

10.
为从含铌铁水中提铌,降低铁水中硅含量以获得高品质的铌渣,实现铌资源的综合利用。采用100 kW中频感应炉进行底吹氧气冶炼含铌铁水试验,研究含铌铁水在脱硅过程中硅、铌选择性氧化规律。结果表明:铁水温度在1 350℃,造渣剂碱度为1.5,反应结束后铁水中硅、铌的氧化分别为75.8%、21.4%;而温度在1 350℃,造渣剂碱度为4.6,反应后铁水中硅和铌的氧化率分别为:94.0%,5.9%,但高碱度炉渣抑制了锰元素的去除,造成铁水中锰含量较高,降低后续工艺中提铌所得铌渣的品位。在铁水温度为1 350℃,炉渣碱度w(CaO)/w(SiO2)为1.5时,脱硅的限度为0.15%。  相似文献   

11.
 研究了AOD全铁水冶炼和电炉钢水冶炼两种不锈钢冶炼流程,结果表明,AOD全铁水冶炼不锈钢可以弥补电炉钢水冶炼流程中电炉产能小于连铸产能的缺陷。提出了一种结合AOD全铁水冶炼和电炉钢水冶炼的混合流程。提出了各个工序间钢包最长传搁时间最短为调度目标是更加合理的调度方式,应用遗传算法求解混合流程最长钢包传搁时间最小为60min,小于单纯以连铸机为中心的组织生产调度,既保证了钢包正常的运输,又有足够的时间进行必要的调度和调整。最后,给出混合流程最优调度的甘特图,并基于最优调度并采用统计分析的方法得出工序间传搁过程温降的经验公式,由此给出混合流程最优调度的温度制度。  相似文献   

12.
 分析研究了100t UHP-EAF强化冶炼工艺。在电炉冶炼过程,平均热装铁水比57%的条件下,达到平均电耗12928kW·h/t(钢),氧耗5095m3/t(钢),冶炼周期342min,脱碳速率01179%/min;控制渣碱度在5,可以保证平均脱磷率为8955%,实现电炉强化冶炼。分析表明,铁水比越大,氧耗越大,用氧效率越高;合适的铁水比可以达到最短的冶炼周期。  相似文献   

13.
分析了电炉冶炼不锈钢母液过程中能量输入的基本特性,指出电炉冶炼不锈钢的泡沫渣技术可很好地解决冶炼过程中存在的电耗高、冶炼周期长、耐材消耗大等一系列问题。理论分析了技术难点以及技术开发的可行性。技术关键是要解决渣的发泡性和制造发泡气源,由此概述了当前电炉冶炼不锈钢的泡沫渣技术研究的最新进展,最后讨论了该技术在中国的应用前景。  相似文献   

14.
利顺添 《南方金属》2000,(6):27-31,18
介绍了广钢 60tDC炉和 4 0tAC炉热装铁水 30 %左右的生产情况 ,取得冶炼电耗下降 4 7kWh/t、冶炼时间缩短了 13min/炉的明显效果 ;并对影响冶炼电耗和冶炼时间的因素———供氧、热装时间、炉料配比、热装比例、配电曲线和造渣等进行了分析和探讨  相似文献   

15.
根据高炉冶炼过程中磷还原的机理,以及高炉内存在有利于磷还原的条件,结合目前包钢铁水,原燃料含P水平等几方面进行了分析。通过测算改善高炉入炉原料结构,调控炉温等措施,降低了铁水中的w[P],从而满足了冶炼贝氏体钢的要求。  相似文献   

16.
对影响不锈钢电炉冶炼电耗的主要因素进行了理论分析.降低电炉冶炼电耗的有效途径主要是优化供电曲线、合理用氧、优化铁水热装技术以及缩短冶炼周期.优化供电曲线,可以提高电炉变压器利用率和电炉电能利用率;优化不锈钢电炉吹氧技术,能够提高电炉化学能输入;优化电炉铁水热装技术,可以有效利用物理热和化学热;缩短电炉冶炼周期,可以减少热能损失.不锈钢分公司不锈钢电炉中应用冶炼电耗综合控制方法,有效降低了冶炼电耗,提高了电炉生产率.  相似文献   

17.
孟华栋  杨勇  姚同路 《中国冶金》2006,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

18.
孟华栋  杨勇  姚同路 《中国冶金》2022,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

19.
熔融还原炼铁技术分析   总被引:2,自引:0,他引:2  
分析了主要的熔融还原炼铁流程.COREX采用预还原竖炉+熔融气化炉的纯氧炼铁流程,已经工业化,但吨铁焦炭量维持在250 kg左右的水平,吨铁燃料比达到1 000 kg.FINEX采用多级流化床+热压块+熔融气化炉+煤气脱除CO:循环使用的纯氧炼铁流程,可直接处理粉矿,吨铁燃料比为800 ks左右,吨铁焦炭使用量在200kg左右,不过FINEX工艺复杂,效率低,仍在进行工业化试验.HISMELT试图采用一步法直接熔融还原粉矿,难度大,指标与预期相差较大,尚处在技术攻关阶段.可见,目前的熔融还原炼铁流程,离低能耗、低污染的炼铁目标相差甚远,最大的问题是预还原矿粉(球团)的低温还原性能差,提高铁矿的低温反应性能是熔融还原炼铁走向成功、高效、环保的关键所在.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号