共查询到20条相似文献,搜索用时 46 毫秒
1.
针对钒钛磁铁矿的特点及利用难点,研究了钒钛磁铁矿气基还原过程及其影响因素,讨论了还原温度、还原时间、还原气氛和气体流量对钒钛磁铁矿还原率和金属化率的影响。试验结果表明,钒钛磁铁矿试样在还原温度为1 000℃,还原时间为2 h,还原气氛为21%CO+55%H2+24%N2,还原气体流量为13.26 L/min的条件下,可得到还原率为96.72%,金属化率为92.05%的良好结果。采用气基竖炉直接还原工艺流程,能够将钒钛磁铁矿中的铁氧化物还原为金属铁,实现铁的高效富集。 相似文献
2.
钒钛磁铁矿直接还原实验研究 总被引:10,自引:0,他引:10
在实验室条件下研究了钒钛磁铁矿直接还原特点,摸索了还原温度、还原时间、还原气氛和配碳量对直接还原金属化率的影响.结果表明,还原温度和气氛是影响金属化率的最重要因素,温度达到1 300℃以上,还原时间达到20 min以上,维持还原过程中性至还原性气氛,球团金属化率可稳定保持在90%以上.同时分析了还原后金属化球团的岩相组成,比较了钒钛磁铁矿与普通矿直接还原的差异. 相似文献
3.
4.
《钢铁钒钛》2021,42(4):105-110
以钒钛磁铁精矿为原料,直接还原工艺为基础,系统比较了不同加热方式对还原过程的影响。结果表明:与传统加热相比,微波加热能加快钒钛磁铁矿还原反应的进行,并且随温度升高效果越显著,在1 350℃时铁金属化率可达到91.91%,提高了5.32个百分点;微波加热不会改变还原产物的物相组成,但使还原产物结构致密,气孔减少,晶粒粗大且分布均匀,脉石与金属铁嵌布紧密程度降低,相互之间夹杂的现象减少,有利于后续磨矿磁选过程中金属铁与脉石相的分离;另外,微波加热可以明显去除还原产物中P元素,而对于S元素的去除效果不显著,在1 350℃时传统加热获得的产物中P含量为0.077%,S含量为0.29%,微波加热获得的产物中P含量为0.038%,S含量为0.28%。 相似文献
5.
以转底炉工艺为基础,在实验室模拟条件下,进行了钒钛磁铁矿含碳球团直接还原高温焙烧试验。通过XRD分析,讨论了配碳量(wC/wO)、还原温度、还原时间对球团金属化率和残碳量的影响。结果表明:随着还原温度的升高金属化率不断升高,而残碳量不断降低;在1 350℃之前,随着温度的升高,金属化率迅速升高,然后趋于平缓;当还原温度为1 350℃时,金属化率可达90%以上,随着还原时间的增加,球团的金属化率呈现先升高后降低的趋势,残碳量逐渐降低,还原时间为30 min时,球团的金属化率达到最大(91.37%);随着配碳量(wC/wO)的增加,球团还原速率加快,球团还原充分,球团的金属化率升高,当wC/wO为1.3时达到最大(94.28%)。 相似文献
6.
7.
8.
9.
在温度为1 100~1 350℃及惰性气体保护条件下,对钒钛磁铁矿进行了等温直接还原试验,研究了还原温度、时间等还原条件对还原速率和金属化率的影响。结果表明:在温度为1 150~1 350℃时,初始30 min的还原速率高,之后还原缓慢;动力学分析结果表明,在温度1 100~1 350℃,钒钛磁铁矿内配碳直接还原反应受三维扩散控制。 相似文献
10.
气基还原工艺处理钒钛磁铁矿逐渐受到研究者的关注,但目前该工艺还原后的钒钛磁铁矿金属化率较低。针对气基还原钒钛磁铁矿金属化率低的问题,以兰炭为骨料研究兰炭添加量、还原气氛、还原温度、还原时间等因素对钒钛磁铁矿气基还原金属化率及抗压强度的影响,并运用X射线衍射(XRD)和扫描电镜(SEM)方法分析了还原产物物相变化及微观形貌变化,总结出兰炭的作用机理。结果表明,添加兰炭可提升钒钛磁铁矿气基还原的效果,在还原气氛φ(H2)/φ(CO)=2.5、还原温度1 100℃、还原时间60 min条件下,未添加兰炭时试样金属化率仅为81.78%;在同样条件下,当兰炭添加量(质量分数)为6%时,试样金属化率可达到92.35%。钛铁化合物还原历程为Fe2.75Ti0.25O4→Fe2TiO4→FeTiO3→FeTi2O5→TiO2和Fe,随着还原温度升高,金属铁相逐渐聚集连接成片,渣相与铁相... 相似文献
11.
12.
钒钛磁铁矿碳热钠化还原工艺 总被引:1,自引:0,他引:1
为了降低钒钛磁铁矿的还原和熔分温度,提高钛与钒的回收率,采取碳热钠化还原法处理钒钛磁铁矿,研究了钠化剂对钒钛磁铁矿还原以及熔分后钛、钒分布的影响。结果表明,钠化剂能显著改善钒钛磁铁矿的还原性以及磁选和熔分效果,钠化比为1.2时,1 100 ℃还原60 min即可达到90%以上的金属化率,磁选后铁的收得率达到92%以上,铁品位接近80%。1 450 ℃以上的温度熔分后,铁的收得率高于95%,钒在铁水中的分配比为91%,熔分渣水洗后[w(TiO2)]达到56%。 相似文献
13.
14.
15.
研究以煤泥为还原剂,印尼某海滨钛磁铁矿在直接还原焙烧过程中,不同焙烧温度下矿物组成变化规律.X射线衍射和扫描电镜分析结果表明,随着焙烧温度的升高,钛磁铁矿逐渐被还原.其中铁矿物经过浮士体(FeO),最终被还原成金属铁;而钛则经过钛尖晶石最终生成钛铁矿和少部分的铁板钛矿.在整个直接还原焙烧过程中,金属铁颗粒在1100℃左右生成,然后不断长大,在1250℃时金属铁颗粒明显增多,在之后的保温过程中,金属铁颗粒不断长大,并在此过程中将金属铁从中分离出来. 相似文献
16.
17.
钒钛磁铁矿深度直接还原熔分提铁 总被引:1,自引:0,他引:1
以热力学分析为基础,采用直接还原熔分工艺对国外某钒钛磁铁矿进行了研究.利用 Factsage 软件计算了不同添加剂配比下的渣相四元相图,并进行直接还原试验,研究了 SiO2和 CaO 加入量对还原反应的影响以及CaF2的加入量对铁品位和回收率的影响.结果表明:在还原温度1380℃,还原时间30 min,SiO2的质量分数为7.0%,CaO的质量分数为3.5%,CaF2的质量分数为1.4%,煤粉加入质量分数为17.4%的实验条件下,还原后金属相中铁品位在95.0%以上,铁回收率97.0%以上. 相似文献
18.
通过钒钛磁铁矿精矿直接还原实验,研究了不同还原剂和添加剂对还原过程金属铁颗粒长大的影响.提高还原温度能促进还原产物中金属铁颗粒的长大,金属铁颗粒中V含量也显著增加.与用无烟煤和褐煤还原产物相比,用烟煤还原产物中金属铁颗粒明显长大,这是由烟煤中高灰分含量所引起的.金属铁颗粒长大机理的研究表明:Na2CO3和Na2SiO3的熔点较低,且能破坏铁橄榄石和铁尖晶石的结构,并生成一些低熔点物质,而SiO2能与铁橄榄石形成低共熔混合物.这些低熔点物质都有助于改善金属铁相的扩散,从而促进金属铁颗粒长大. 相似文献
19.
20.
In situ selective carbothermic reactions and vacuum sintering were used to prepare iron-based friction material directly from vanadium-bearing titanomagnetite c... 相似文献