首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for approximating multivariate numerical derivatives is presented from multidimensional noise data in this paper. Starting from solving a direct heat conduction problem using the multidimensional noise data as an initial condition, we conclude estimations of the partial derivatives by solving an inverse heat source problem with an over-specified condition, which is the difference of the solution to the direct problem and the given noise data. Then, solvability and conditional stability of the proposed method are discussed for multivariate numerical derivatives, and a regularized optimization is adopted for overcoming instability of the inverse heat source problem. For achieving partial derivatives successfully and saving amount of computation, we reduce the multidimensional problem to a one-dimensional case, and give a corresponding algorithm with a posterior strategy for choosing regularization parameters. Finally, numerical examples show that the proposed method is feasible and stable to noise data.  相似文献   

2.
This paper presents the use of the method of fundamental solutions (MFS) for recovering the heat source in steady‐state heat conduction problems from boundary temperature and heat flux measurements. It is well known that boundary data alone do not determine uniquely a general heat source and hence some a priori knowledge is assumed in order to guarantee the uniqueness of the solution. In the present study, the heat source is assumed to satisfy a second‐order partial differential equation on a physical basis, thereby transforming the problem into a fourth‐order partial differential equation, which can be conveniently solved using the MFS. Since the matrix arising from the MFS discretization is severely ill‐conditioned, a regularized solution is obtained by employing the truncated singular value decomposition, whilst the optimal regularization parameter is determined by the L‐curve criterion. Numerical results are presented for several two‐dimensional problems with both exact and noisy data. The sensitivity analysis with respect to two solution parameters, i.e. the number of source points and the distance between the fictitious and physical boundaries, and one problem parameter, i.e. the measure of the accessible part of the boundary, is also performed. The stability of the scheme with respect to the amount of noise added into the data is analysed. The numerical results obtained show that the proposed numerical algorithm is accurate, convergent, stable and computationally efficient for solving inverse source problems in steady‐state heat conduction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we investigate the inverse heat source problem of finding the time-dependent source function together with the temperature. Three general nonlocal conditions are considered for the boundary and overdetermination conditions resulting in six different cases. The boundary element method combined with Tikhonov regularization is employed in order to obtain an accurate and stable numerical solution.  相似文献   

4.
Based on the method of fundamental solutions and discrepancy principle for the choice of location for source points, we extend in this paper the application of the computational method to determine an unknown free boundary of a Cauchy problem of parabolic‐type equation from measured Dirichlet and Neumann data with noises. The standard Tikhonov regularization technique with the L‐curve method for an optimal regularized parameter is adopted for solving the resultant highly ill‐conditioned system of linear equations. Both one‐dimensional and two‐dimensional numerical examples are given to verify the efficiency and accuracy of the proposed computational method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a recursion numerical technique is considered to solve the inverse heat conduction problems, with an unknown time-dependent heat source and the Neumann boundary conditions. The numerical solutions of the heat diffusion equations are constructed using the Gaussian radial basis functions. The details of algorithms in the one-dimensional and two-dimensional cases, involving the global or partial initial conditions, are proposed, respectively. The Tikhonov regularization method, with the generalized cross-validation criterion, is used to obtain more stable numerical results, since the linear systems are badly ill-conditioned. Moreover, we propose some results of the condition number estimates to a class of positive define matrices constructed by the Gaussian radial basis functions. Some numerical experiments are given to show that the presented schemes are favourably accurate and effective.  相似文献   

6.
A boundary meshless method has been developed to solve the heat conduction equations through the use of a newly established two‐stage approximation scheme and a trigonometric series expansion scheme to approximate the particular solution and fundamental solution, respectively. As a result, no fundamental solution is required and the closed form of approximate particular solution is easy to obtain. The effectiveness of the proposed computational scheme is demonstrated by several examples in 2D and 3D. We also compare our proposed method with the finite‐difference method and the other meshless method showed in ?arler and Vertnik (Comput. Math. Appl. 2006; 51 :1269–1282). Excellent numerical results have been observed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A meshless numerical model is developed for analyzing transient heat conduction in non-homogeneous functionally graded materials (FGM), which has a continuously functionally graded thermal conductivity parameter. First, the analog equation method is used to transform the original non-homogeneous problem into an equivalent homogeneous one at any given time so that a simpler fundamental solution can be employed to take the place of the one related to the original problem. Next, the approximate particular and homogeneous solutions are constructed using radial basis functions and virtual boundary collocation method, respectively. Finally, by enforcing satisfaction of the governing equation and boundary conditions at collocation points of the original problem, in which the time domain is discretized using the finite difference method, a linear algebraic system is obtained from which the unknown fictitious sources and interpolation coefficients can be determined. Further, the temperature at any point can be easily computed using the results of fictitious sources and interpolation coefficients. The accuracy of the proposed method is assessed through two numerical examples.  相似文献   

8.
This paper is concerned with the development of a meshless local approach based on the finite collocation method for solving Cauchy problems of 2-D elliptic PDEs in annulus domains. In the proposed approach, besides the collocation of unknown solution, the governing equation is also enforced in the local domains. Moreover, to improve the accuracy, the method considers auxiliary points in local subdomains and imposes the governing PDE operator at these points, without changing the global system size. Localization property of the method reduces the ill-conditioning of the problem and makes it efficient for Cauchy problem. To show the efficiency of the method, four test problems containing Laplace, Poisson, Helmholtz and modified Helmholtz equations are given. A numerical comparison with traditional local RBF method is given in the first test problem.  相似文献   

9.
An inverse heat conduction problem for nanoscale structures was studied. The conduction phenomenon is modelled using the Boltzmann transport equation. Phonon‐mediated heat conduction in one dimension is considered. One boundary, where temperature observation takes place, is subject to a known boundary condition and the other boundary is exposed to an unknown temperature. The gradient method is employed to solve the described inverse problem. The sensitivity, adjoint and gradient equations are derived. Sample results are presented and discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, a meshless numerical method for solving the inverse source problem of the space-fractional diffusion equation is proposed. The numerical solution is approximated using the fundamental solution of the space-fractional diffusion equation as a basis function. Since the resulting matrix equation is extremely ill-conditioned, a regularized solution is obtained by adopting the Tikhonov regularization scheme, in which the choice of the regularization parameter is based on generalized cross-validation criterion. Two typical numerical examples are given to verify the efficiency and accuracy of the proposed method.  相似文献   

11.
This study documents the first attempt to extend the singular boundary method, a novel meshless boundary collocation method, for the solution of 3D elasticity problems. The singular boundary method involves a coupling between the regularized BEM and the method of fundamental solutions. The main idea here is to fully inherit the dimensionality and stability advantages of the former and the meshless and integration‐free attributes of the later. This makes it particularly attractive for problems in complex geometries and three dimensions. Four benchmark 3D problems in linear elasticity are well studied to demonstrate the feasibility and accuracy of the proposed method. The advantages, disadvantages, and potential applications of the proposed method, as compared with the FEM, BEM, and method of fundamental solutions, are also examined and discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, a nonlinear inverse boundary value problem associated to the biharmonic equation is investigated. This problem consists of determining an unknown boundary portion of a solution domain by using additional data on the remaining known part of the boundary. The method of fundamental solutions (MFS), in combination with the Tikhonov zeroth order regularization technique, are employed. It is shown that the MFS regularization numerical technique produces a stable and accurate numerical solution for an optimal choice of the regularization parameter. A. Zeb on study leave visiting the University of Leeds.  相似文献   

13.
In this paper, we investigate the application of the Method of Fundamental Solutions (MFS) to two‐dimensional problems of steady‐state heat conduction in isotropic and anisotropic bimaterials. Two approaches are used: a domain decomposition technique and a single‐domain approach in which modified fundamental solutions are employed. The modified fundamental solutions satisfy the interface continuity conditions automatically for planar interfaces. The two approaches are tested and compared on several test problems and their relative merits and disadvantages discussed. Finally, we use the domain decomposition approach to investigate bimaterial problems where the interface is non‐planar and the modified fundamental solutions cannot be used. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Element differential method (EDM), as a newly proposed numerical method, has been applied to solve many engineering problems because it has higher computational efficiency and it is more stable than other strong-form methods. However, due to the utilization of strong-form equations for all nodes, EDM become not so accurate when solving problems with abruptly changed boundary conditions. To overcome this weakness, in this article, the weak-form formulations are introduced to replace the original formulations of element internal nodes in EDM, which produce a new strong-weak-form method, named as weak-form element differential method (WEDM). WEDM has advantages in both the computational accuracy and the numerical stability when dealing with the abruptly changed boundary conditions. Moreover, it can even achieve higher accuracy than finite element method (FEM) in some cases. In this article, the computational accuracy of EDM, FEM, and WEDM are compared and analyzed. Meanwhile, several examples are performed to verify the robustness and efficiency of the proposed WEDM.  相似文献   

15.
Among inverse problems for partial differential equations, we distinguish coefficient inverse problems, which are associated with the identification of coefficients and/or the right-hand side of an equation using some additional information. When considering time-dependent problems, the identification of the coefficient dependences on space and on time is usually separated into individual problems. In some cases, we have linear inverse problems (e.g. identification problems for the right-hand side of an equation); this situation essentially simplify their study. This work deals with the problem of determining in a multidimensional parabolic equation the lower coefficient that depends on time only. To solve numerically a non-linear inverse problem, linearized approximations in time are constructed using standard finite difference approximations in space. The computational algorithm is based on a special decomposition, where the transition to a new time level is implemented via solving two standard elliptic problems.  相似文献   

16.
We propose an iteration method to recover a space-dependent source for a time-fractional diffusion equation from the final measurement. Based on the conditional stability of the inverse problem, we prove the convergence of the iterative regularization method under the a priori parameter choice rule and the a posteriori parameter choice rule, respectively. Numerical examples in one dimension and two dimension are given to validate the effectiveness of the presented method.  相似文献   

17.
In this work, the boundary distributed source (BDS) method [EABE 34(11): 914-919] based on the method of fundamental solutions (MFS) is considered for the solution of two-dimensional Laplace equations. The BDS is a truly mesh-free method and quite easy to implement since the source points and field points are collocated on the domain boundary while the conventional MFS requires a fictitious boundary where the source points locate. The main idea of the BDS is that to avoid the singularities of the fundamental solutions the concentrated point sources in the conventional MFS are replaced by distributed sources over circles centered at the source points. In the original BDS, all elements of the system matrix can be derived analytically in a very simple form for the Dirichlet boundary conditions and off-diagonal elements for the Neumann boundary conditions, while the diagonal elements for the Neumann boundary conditions can be obtained indirectly from the constant potential field. This work suggests a simple way to determine the diagonal elements for the Neumann boundary conditions by invoking that the boundary integration of the normal gradient of the potential should vanish. Several numerical examples are addressed to show the feasibility and the accuracy of the proposed method.  相似文献   

18.
In this paper, a new and simple boundary‐domain integral equation is presented for heat conduction problems with heat generation and non‐homogeneous thermal conductivity. Since a normalized temperature is introduced to formulate the integral equation, temperature gradients are not involved in the domain integrals. The Green's function for the Laplace equation is used and, therefore, the derived integral equation has a unified form for different heat generations and thermal conductivities. The arising domain integrals are converted into equivalent boundary integrals using the radial integration method (RIM) by expressing the normalized temperature using a series of basis functions and polynomials in global co‐ordinates. Numerical examples are given to demonstrate the robustness of the presented method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
20.
In this paper, inverse source problem for the wave equation is considered in one dimension with overdetermination condition. To solve this problem, a version of homotopy analysis method, called weighted homotopy analysis method, is introduced and applied. To show accuracy and reliability of the mentioned method, three numerical examples are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号