首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在250-400℃的温度范围和0.1-50 s^-1的应变速率范围内对ZK60合金进行压缩变形,对其流变行为和显微组织进行研究。结果表明,在低应变速率(0.1-1 s^-1)下压缩变形时,再结晶主要发生在初始晶界上;在高应变速率(10-50 s^-1)下压缩变形时,再结晶同时在初始晶界和孪晶上发生。合金在应变速率10-50 s^-1和温度250-350℃的变形条件下获得均匀、细小的再结晶组织。因此,合金的最佳热加工工艺范围为应变速率10-50 s^-1、变形温度250-350℃。高应变速率压缩变形条件下的孪生诱发动态再结晶过程分三步,首先,高位错密度孪晶分割初始晶粒;然后,孪晶内的位错发生重排形成亚晶;最后,随着应变的增加而形成再结晶晶粒。  相似文献   

2.
采用Gleeble-1500热模拟试验机对AZ61镁合金在变形温度为250~400℃、应变速率为0.001~10.000s-1条件下进行热压缩试验,研究了合金的热压缩变形行为及热加工图。结果表明,合金在高应变速率(10.000s-1)变形条件下具有较高的能量耗散率;该工艺范围内动态再结晶同时在初始晶界和孪晶上发生,合金具有较高的再结晶程度。因此,变形温度为250~400℃、应变速率为10.000s-1是较好的热加工工艺。  相似文献   

3.
采用Gleeble热模拟方法研究Mg?6Zn?1Al?0.3Mn 变形镁合金在温度为200~400°C,应变速率为0.01~7 s?1条件下的热压缩变形行为。结果表明,变形温度和应变速率显著影响其热变形行为。通过计算获得了热变形激活能及应力指数分别为Q=166 kJ/mol,n=5.99,且其本构方程为ε&=3.16×1013[sinh(0.010σ)]5.99exp [?1.66×105/(RT)]。热压缩显微组织观察表明:在应变速率为0.01~1 s?1的条件下,在250°C热压缩变形时初始晶粒晶界及孪晶处发生了部分动态再结晶,而在高温(350~400°C)条件下,发生了完全动态再结晶且再结晶晶粒尺寸随着应变速率的增加而减小。获得的较优的变形条件为温度330~400°C、应变速率为0.01~0.03 s?1以及350°C、应变速率为1 s?1。  相似文献   

4.
Ti6Al4V钛合金的变形组织及织构   总被引:1,自引:0,他引:1  
在温度850~930°C、应变速率0.01~1 s-1的条件下,对初始组织为等轴组织的Ti6Al4V钛合金进行变形程度为70%的热压缩变形实验,研究合金的变形组织及织构。结果表明,当温度低于900°C、应变速率高于0.1 s-1时,合金的组织主要是拉长的α晶粒;而在高于900°C以及低应变速率下,则会发生动态再结晶。电子背散射衍射(EBSD)结果显示,合金在再结晶过程中亚晶界吸收位错,最终形成大角晶界。在930°C时动态再结晶已基本完成,水冷至室温时形成针状α相。与原始组织相比,合金在930°C变形时织构得到增强,低于930°C变形时织构变弱。  相似文献   

5.
为阐明应变速率对GH690高温合金热变形特性的影响,采用Gleeble-3800热力模拟试验机,通过变形温度范围为1000~1200°C、应变速率范围为0.001~10 s~(-1)的等温热压缩实验研究了该合金的热变形行为。结果表明:流变应力对应变速率变化敏感,动态再结晶是主要的软化机制;0.1 s~(-1)是1000°C热变形过程中的临界应变速率。绝热温升使得动态再结晶过程与应变速率密切相关;应变速率对热变形过程中的非连续动态再结晶和连续动态再结晶具有显著影响;孪晶可促进动态再结晶形核,Σ3~n(n=1,2,3)晶界在中等应变速率0.1 s~(-1)条件下含量较低。  相似文献   

6.
利用Gleeble-1500D热模拟机对Mg-4Al-0.29Mn-0.97Gd镁合金在应变速率为0.1~5.0s-1、变形温度为200~400℃的试验条件下进行热压缩变形行为进行了研究。结果表明,该合金热压缩时发生了动态再结晶;试样边缘部分的变形机制主要为孪晶,而试样中部的变形机制主要为再结晶;变形温度和应变速率综合影响镁合金的热压缩变形过程。  相似文献   

7.
采用能量消耗加工图研究 2E12 铝合金热压缩过程中的变形行为及其微观组织演变,且建立能量消耗效率与微观组织演变的关系。压缩变形温度范围为 250~500 °C,应变速率范围为 0.01~10 s-1,总真应变量为 0.5。结果表明,加工图中存在 2 个动态回复区域:(1) 325~400 °C,0.01~0.03 s-1,(2) 350~450 °C,1.78~10 s-1。当温度高于 450 °C时,2E12 合金发生部分动态再结晶现象,且动态再结晶体积分数随变形温度的升高而增大,但是当温度为 500 °C,应变速率为 1~10 s-1时,2E12 合金发生了第二相粒子回溶和沿晶开裂的现象。  相似文献   

8.
采用能量消耗加工图研究 2E12 铝合金热压缩过程中的变形行为及其微观组织演变,且建立能量消耗效率与微观组织演变的关系。压缩变形温度范围为 250~500 °C,应变速率范围为 0.01~10 s-1,总真应变量为 0.5。结果表明,加工图中存在 2 个动态回复区域:(1) 325~400 °C,0.01~0.03 s-1,(2) 350~450 °C,1.78~10 s-1。当温度高于 450 °C时,2E12 合金发生部分动态再结晶现象,且动态再结晶体积分数随变形温度的升高而增大,但是当温度为 500 °C,应变速率为 1~10 s-1时,2E12 合金发生了第二相粒子回溶和沿晶开裂的现象。  相似文献   

9.
GH3535合金的热变形和热加工图(英文)   总被引:1,自引:0,他引:1  
通过热压缩实验研究GH3535合金在温度区间1000~1200°C和应变速率区间0.01~50 s-1的热变形行为。在实验数据基础上得到合金应力曲线和热加工图,且其激活能为356.3 k J/mol。热加工图分为2个区域,稳定区域发生在所有温度区间和应变速率区间0.01~1 s-1,失稳区域发生在应变速率区间1~50 s-1。显微组织观察表明,完全动态再结晶发生条件为(1150°C,0.01 s-1),(1200°C,0.01 s-1)和(1200°C,0.1 s-1),不同条件下得到的晶粒尺寸不同且有未溶解碳化物。流变失稳区域有局部流变和裂纹出现。  相似文献   

10.
采用Gleeble-1500热模拟实验机进行热压缩试验,研究ZA27合金的热变形行为,在变形温度为200~350℃、应变速率为0.01~5 s-1、工程应变为60%,基于Murty准则,建立ZA27合金的加工图。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大;在变形温度为200~210℃、应变速率为0.01~0.1 s-1和变形温度为250~350℃、应变速率为1~5 s-1的2个区域内易产生流变失稳现象;动态再结晶是导致流变软化及稳态流变的主要原因,ZA27合金的安全热加工区域的变形温度在250~350℃之间、应变速率在0.1~1 s-1之间。  相似文献   

11.
利用Geeble1500热模拟实验机对双辊连续铸轧AZ31B镁板在变形温度为100℃,应变速率为10-3s-1的条件下进行单轴压缩变形,并利用金相显微镜和透射电子显微镜对其微观组织进行观察。结果表明:在上述的条件下变形时,合金中产生大量的孪晶,孪晶与孪晶之间相互交截,在孪晶界及孪晶交截区出现大量的位错,并且有动态再结晶核心及再结晶小晶粒,说明该合金中动态再结晶形核位置主要为孪晶界及孪晶-孪晶交截区。  相似文献   

12.
为了分析铸造和锻造条件下Ni-42Cu合金的流变行为和热加工性能,在温度为900~1150°C、应变速率为0.001~1 s~(-1)的条件下对合金进行热变形实验。拉伸实验结果表明,950°C时铸造和锻造两种合金均出现"热塑性低谷"。因为慢速动态再结晶,铸造合金的热塑性降低更为明显。合金(特别是铸造合金)的热塑性降低、晶界开裂归因于枝晶原子向晶界的偏析。随应变速率的增大,锻造合金的热塑性得到提高,这与高应变速率下动态再结晶分数的增加有关。此结果验证了动态再结晶机理随应变速率而变化。计算得到锻造合金的应变速率敏感性和不稳定参数结果表明,此合金在低温如950~1050°C和高应变速率(0.1和1 s~(-1))条件下易发生应变集中。根据拉伸和压缩实验结果,合金获得理想热加工性能的最佳温度为1050~1150°C。  相似文献   

13.
《电焊机》2015,(8)
以铸态AZ31B镁合金为研究对象,分别在应变速率为0.005 s-1、0.05 s-1、0.5 s-1,变形温度在300℃、350℃、400℃的条件下,采用热变形模拟实验机对铸态合金进行再结晶行为研究,建立并验证了热变形本构方程、再结晶热力学模型和动态再结晶晶粒尺寸模型。研究表明,晶粒在较低应变速率和较高变形温度下更细,减小了晶界处孪晶位错密度,也为降低后续轧制时边裂现象发生的概率提供了依据。  相似文献   

14.
对铸态AZ31B镁合金在温度280℃~440℃、应变速率0.001s-1~0.1s-1条件下进行热压缩实验,分析变形程度、应变速率和加热温度对其微观组织变化的影响,探讨合金的热压变形机制。实验结果表明,该合金热变形时发生了动态再结晶。变形温度越高、变形速率越小和变形量越大时,动态再结晶进行的越充分;变形温度越低、变形速率越大和变形量越大时,动态再结晶晶粒越细小。该合金的热变形机制是滑移孪晶联合机制。  相似文献   

15.
通过热压缩实验研究Ti-6Al-2Zr-1Mo-1V钛合金在变形温度为1000~1100°C,应变速率为10-3~1.0s-1的条件下的动态再结晶行为。结果表明:在变形温度高于1050°C、应变速率低于0.01s-1时,合金的动态再结晶机制以不连续动态再结晶为主;在变形温度低于1050°C、应变速率高于0.01s-1时,合金的动态再结晶机制以连续动态再结晶为主,同时存在少量的不连续动态再结晶。此外,降低应变速率和升高变形温度均能促进动态再结晶进程并使β变形晶粒细化。  相似文献   

16.
在变形温度为1223~1423 K及应变速率为0.01~10 s-1的条件下,利用MMS-300热模拟试验机开展单道次压缩变形实验,结合SEM-EBSD和TEM等观察分析技术,研究了一种高锰奥氏体孪晶诱发塑性(TWIP)钢的高温热变形及再结晶行为,对其动态再结晶过程中的组织演变规律及其与应力-应变曲线的相关性进行了分析和表征.结果表明,该高锰奥氏体TWIP钢的热变形行为对应变速率较敏感;当应变速率低于0.1 s-1时,热变形过程中发生动态再结晶;当应变速率高于1 s-1时,发生动态回复.通过回归计算建立了该高锰奥氏体TWIP钢的热变形本构方程,分析认为动态再结晶过程中的组织演变规律与其应力-应变曲线密切相关.随着应变量的增加,晶界迁移诱导再结晶形核;形变量进一步增加,产生大量亚晶界;相邻亚晶界上的位错攀移和滑移等运动使晶界合并,导致再结晶晶粒形成.  相似文献   

17.
在变形温度为450°C和应变速率为2 s-1的条件下对均匀化退火后的Mg-7Gd-4Y-1Nd-0.5Zr合金进行热压缩试验。采用金相显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)综合分析合金变形过程中的动态再结晶机制。采用电子背散射衍射(EBSD)获得晶体微取向信息。结果表明:随应变逐渐增加到-1.88,合金流变应力先快速升高到某个峰值,随后下降到最低值,最后又开始逐渐上升。在低应变下,大量{1 012}拉伸孪晶诱发形核形成动态再结晶晶粒,导致晶粒明显细化。动态再结晶晶粒首先在孪晶边界进行形核,且与孪晶母体存在30°0001的取向差。在大应变下,合金组织中在原始大晶粒附近形成细小动态再结晶晶粒,且从原始大晶粒内部到其晶界处的累积微取向连续增加,从而确定合金发生了连续动态再结晶。合金中也发现了粒子激发形核的动态再结晶机制。  相似文献   

18.
采用等温热压缩试验研究不同变形条件下(变形温度300~450°C、应变速率0.01~10 s~(-1))喷射成形Al-9.0Mg-0.5Mn-0.1Ti合金挤压坯的流变应力行为,并基于动态材料模型建立2D加工图和3D功率耗散图来分析合金的流变失稳区和优化合金的热变形工艺参数。结果表明,当应变为0.4时,合金在300°C、1 s~(-1)条件下压缩变形,能量耗散效率因子η值最小,主要软化机制为动态回复,晶粒呈扁平状,大角度晶界(15°)约占34%;合金在400°C、0.1 s~(-1)条件下压缩变形,能量耗散效率因子η值最大,合金的主要软化机制为动态再结晶,组织为完全再结晶组织,大角度晶界(15°)约占86.5%。2D加工图和3D功率耗散图表明喷射成形Al-9.0Mg-0.5Mn-0.1Ti合金挤压坯的最佳变形条件是:变形温度340~450°C、应变速率0.01~0.1 s~(-1),合金的能量耗散系数38%~43%。  相似文献   

19.
采用三思万能试验机(UTM5105G),在变形温度为573~723K、应变速率为0.000 1~0.1s-1的变形条件下,对AE42镁合金进行热压缩试验,并对其热变形行为及微观组织进行了研究。结果表明,合金的流变应力与温度成反比,与应变速率成正比;合金组织随着变形温度的升高和应变速率的减小,由孪晶向动态再结晶(DRX)转变。该过程可采用双曲正弦形式的本构方程描述。  相似文献   

20.
通过热压缩实验,研究挤压态AZ80镁合金在变形温度为250-450℃,应变速率为0.001-10 s-1条件下的热变形行为。采用经过温升修正的流变应力计算该合金的Zener-Hollomon参数(Z参数)。结果表明,挤压态AZ80镁合金适宜的变形条件为应变速率0.1 s-1、变形温度350-400℃。另外,讨论了显微组织演化与Z参数之间的关系。在高温及低应变速率(低Z参数)时,合金发生了完全再结晶并产生了大的再结晶晶粒。综合考虑加工图和显微组织,变形温度400℃、应变速率0.1 s-1是合金适宜的热变形条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号