首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究采用CO还原不同比例Fe2O3-NiO复合物的非等温还原动力学及机理。结果表明:随着NiO含量的增加,样品的还原程度不断提高,NiO的存在提高氧化铁还原率。在还原开始阶段,NiO优先被还原,Ni作为催化剂可以提高氧化铁的还原率。NiO含量的增加促进镍铁相(FeNi3)的增加,但导致铁纹石相(Fe,Ni)和镍纹石相(Fe,Ni)的减少。金属镍、金属铁及镍铁合金的形成导致微观颗粒具有均匀性。在还原初始阶段,气体产物中CO浓度大于CO2浓度,然后逐渐减小,当温度在400~500°C内,Fe2O3-NiO复合物的还原速率达到最大值,成核长大模型可以揭示还原机理。在温度低于1000°C的条件下,成核长大过程是还原反应速率的限制环节。  相似文献   

2.
主要研究不同质量比的Fe_2O_3-NiO在氢气气氛下还原过程的非等温动力学。根据热分析动力学研究方法,结合样品的质量损失曲线,获得了样品在非等温还原过程中的动力学曲线,并确定Fe_2O_3-NiO体系在氢气气氛下还原过程的最佳机理函数(G(α)=[-ln(1-α)]~4),过程受随机成核和随后生长机理控制。结果表明:当样品中Fe_2O_3-NiO质量比从1:2变化到2:1时,还原反应过程的活化能从249.821 kJ/mol增加至390.074 kJ/mol;随着体系中NiO含量增加,还原反应开始的温度逐渐降低,还原产物物相由铁纹石相(Fe,Ni)和镍纹石相(Fe,Ni)逐渐转变为镍铁合金相(FeNi_3),产物微观颗粒尺寸变得不均匀。通过建立数学模型,验证了反应过程中反应分数的模型计算值与实验测量值具有良好的相关性。  相似文献   

3.
主要研究不同质量比的Fe_2O_3-NiO在氢气气氛下还原过程的非等温动力学。根据热分析动力学研究方法,结合样品的质量损失曲线,获得了样品在非等温还原过程中的动力学曲线,并确定Fe_2O_3-NiO体系在氢气气氛下还原过程的最佳机理函数(G(α)=[-ln(1-α)]~4),过程受随机成核和随后生长机理控制。结果表明:当样品中Fe_2O_3-NiO质量比从1:2变化到2:1时,还原反应过程的活化能从249.821 kJ/mol增加至390.074 kJ/mol;随着体系中NiO含量增加,还原反应开始的温度逐渐降低,还原产物物相由铁纹石相(Fe,Ni)和镍纹石相(Fe,Ni)逐渐转变为镍铁合金相(FeNi_3),产物微观颗粒尺寸变得不均匀。通过建立数学模型,验证了反应过程中反应分数的模型计算值与实验测量值具有良好的相关性。  相似文献   

4.
微纳米氧化铁粉低温还原动力学及机理的研究   总被引:1,自引:0,他引:1  
研究了<1μm氧化铁粉在500℃、380℃、260℃、150℃温度下氢还原时,还原温度和氧化铁粉粒度对还原率、还原过程和还原产物相结构的影响.结果表明,500℃和380℃下还原速度较快,分别在15和23min后即能完成还原.在260℃和150℃下还原甚为缓慢;粉末粒度的细化在还原初期可明显提高还原速度,但随着还原反应的进行,在试验条件下粒度对反应的有利影响逐渐减缓;在温度<570℃的低温下氧化铁还原过程经由Fe2O3→Fe3O4→Fe两步进行,其整个反应速率受控于Fe3O4还原为Fe的反应过程,实验中并没有发现富氏体的存在.  相似文献   

5.
研究不同条件下C还原Fe-Cr-O体系(FeCr2O4和Fe2O3+Cr2O3)及Fe-Cr-Ni-O体系(Fe2O3+Cr2O3+NiO)的还原行为及产物特性。结果表明:温度与碳氧比对C还原Fe-Cr-O和Fe-Cr-Ni-O体系所得产物的组成有很大的影响,在较高温度和较低碳氧比的条件下,产物中残余碳含量更少且Fe-Cr和Fe-Cr-Ni合金含量更多;样品的还原率在很大程度上取决于还原时间和温度,在不同温度条件下,产物中的残余碳含量均随着碳氧比的增加而升高。此外,对不同时间条件下C还原Fe-Cr-O体系所得产物进行XRD分析,利用SEM和EDS研究C还原Fe-Cr-O和Fe-Cr-Ni-O体系所得最终产物中不同相的微观形貌和元素分布。  相似文献   

6.
先采用电沉积?电泳方法在Ni基体高温合金上制备电镀Ni/电泳Fe2O3复合涂层,再通过后续空气中进行的高温预氧化处理方法来获得NiO/NiFe2O4复合氧化物涂层。利用DSC、SEM、EDS和XRD等检测手段分析预氧化温度对涂层的结构、微观形貌、元素分布及相组成等影响,并对涂层形成的反应机理及预氧化动力学进行讨论。结果表明:经1 000、1 100和1 200℃下氧化4 h后,氧化膜中均生成NiO和NiFe2O4。氧化温度为1 000℃时涂层表面还存在没有参与反应的Fe2O3,但随氧化温度的升高,Fe2O3层随之消失。温度为1 100和1 200℃时氧化膜中的NiO、NiFe2O4相与镀Ni基体之间形成了冶金结合,并且通过扩散在NiO相内部形成了NiFe2O4析出相。Ni基体以及电镀Ni/电泳Fe2O3复合涂层在1 000℃预氧化时单位面积上的质量增加随时间增加,大体遵循抛物线规律,且电镀Ni/电泳Fe2O3复合涂层单位面积上的质量增加大于镀Ni基体的。涂层的厚度与氧化质量增加随预氧化扩散温度的提高而增加。  相似文献   

7.
利用碳还原-磁选工艺回收低品位红土镍矿中的铁和镍。在对矿物成分、物相分析的基础之上,考察还原反应温度、配碳比(C/O)、助熔剂的添加量(Ca O%)和还原时间等因素对Fe、Ni回收的影响,结果表明,还原反应温度1 375℃、配碳比(C/O)0.8、助熔剂的添加量(Ca O%)12%、还原时间300 min的条件下,低品位红土镍矿中镍和铁的回收率分别为99.47%和97.54%,同时尾矿中Ni、Cr含量低于0.04%。  相似文献   

8.
通过高能球磨Ni CO_3和Al粉后退火制备纯NiAl_2O_4。采用X射线衍射、差热扫描、热重分析、扫描电子显微镜和透射电子显微镜研究粉末样品的相组成、热学行为、形貌和组织。从Ni CO_3和Al粉中合成尖晶石结构NiAl_2O_4分为三步:Al氧化成Al_2O_3,碳酸镍分解为Ni O和CO2,最后Al2O3与Ni O发生固相反应。Ni CO_3/Al混合物经5 h机械球磨后于900°C退火2 h即可形成NiAl_2O_4单相,退火温度比传统固相方法低约500°C。透射电子显微镜结果表明,所得尖晶石结构的NiAl_2O_4化合物的粒径小于100 nm。  相似文献   

9.
Li_2CO_3在含碳球团还原中催化机理的研究   总被引:1,自引:0,他引:1  
通过在氧化铁中添加碳粉和少量Li2CO3添加剂,考察了碱金属化合物和温度对含碳球团还原过程的影响,探讨了减金属化合物的催化机理,实验结果表明,球团还原车随着碱金属化合物添加量而增大,但增大幅度随添加剂增多、温度升高而减小在球团还原初期,Boudouard反应是还原的限制环节,添加Li2CO3可以降低反应活化能较高温度下球团还原后期,氧化铁的气相还原是反应的限制性环节,添加Li2CO3可以加快Fe/FeO界面上FeO的还原反应,实验条件范围内,温度升高和Li2CO3添加量增加,促进反应限制环节从Boudouard反应向氧化铁还原的转化  相似文献   

10.
由于硫化镍矿生产镍铁在经济和环境上不断出现的问题,采用红土镍矿生产镍铁越来越受到重视。但是红土镍矿制备镍铁的火法工艺中,在提高铁镍产品中的镍含量方面的理论研究仍存在许多不足。出于这方面的考虑,假设Fe2O3、Fe O和Fe3O4的活度为1,计算了CO2/CO、H2O/H2和CO2/H2三种气氛下选择性还原红土镍矿时,不同铁活度下铁-铁氧化物的平衡条件。从已有的热力学数据出发,利用Miedema二元合金生成热模型,计算了Ni-Fe固态二元合金中铁的活度系数。并以活度系数为纽带,最终计算出这三种还原气氛下,镍铁合金产物中的铁含量与还原气体分压、还原温度的关系。并用CO2/H2还原红土镍矿,得到的实验数据与理论值进行了对比分析与讨论,热力学计算结果很好地解释了选择性还原红土镍矿时铁金属化无法避免的原因,并较好地预测了红土镍矿还原产物中铁含量随温度和气体组分的变化趋势。  相似文献   

11.
研究添加碳酸钙对镍渣碳热还原过程的影响,并分析其机理。结果表明,随着原料中碳酸钙添加量从0增加到8%(质量分数),还原反应初始温度和达到最大反应速率所需的温度分别从1100和1150°C降低到1000和1100°C,镍渣的还原率从58%增加到88%;还原后的渣中铁粒发生粗化,金属铁的衍射峰强度增加,表明添加碳酸钙有利于促进镍渣中铁化合物的还原回收。  相似文献   

12.
为了将锌焙砂中铁酸锌选择性地分解为Zn O和Fe_3O_4,研究在CO还原焙烧过程中铁酸锌的分解行为。采用HSC和Factsage软件计算铁酸锌在CO还原气氛下分解的热力学基础,再通过回转窑焙烧试验考察还原焙烧条件对铁酸锌分解行为的影响。结果表明:在适宜的温度和气氛下锌焙砂中的铁酸锌能选择性转化为Zn O和Fe_3O_4,CO浓度、p(CO)/p(CO+CO_2)值、焙烧温度和时间是影响铁酸锌分解的主要因素,提高焙烧温度、延长时间、增加CO浓度和分压有利于铁酸锌的分解,也会促进Fe O的生成;在最佳条件下,铁酸锌的分解率近70%,且过还原不严重。经XRD和SEM/EDS分析,产物主要以Zn O、Fe_3O_4、Zn S和Zn_2Si O_4为主,且颗粒粒度较小、疏松多孔及互相包裹严重。  相似文献   

13.
传统湿法炼锌过程产生大量富含有价金属资源的铁酸锌废渣,铁的分离是实现铁酸锌废渣中有价金属资源回收的关键。提出含大量铁酸锌的锌浸出渣选择性还原焙烧?浸出分离铁和锌的新方法。通过热力学分析确定铁酸锌分解过程中Fe3O4和ZnO产物的优势区域,并发现V(CO)/V(CO+CO2)比是控制铁酸锌还原焙烧产物物相的关键因素,在V(CO)/V(CO+CO2)比在2.68%?36.18%范围内,铁酸锌优先分解生成在Fe3O4和ZnO。通过TG分析,确定铁酸锌还原焙烧的最佳条件为焙烧温度700?750°C,CO体积分数6%,V(CO)/V(CO+CO2)30%。基于上述研究结果,对富含铁酸锌的锌浸渣进行还原焙烧处理,焙烧产物经酸浸后,锌的浸出率达70%,铁的浸出率仅为18.4%,实现锌浸渣中锌和铁的有效分离。  相似文献   

14.
武信 《轻金属》2013,(2):52-55
采用了HSC chemistry 5.0热力学分析软件、XRD、SEM及EDS等方法与手段,对碳热还原法从红土镍矿中提取金属镁过程进行了热力学分析及实验研究。研究结果显示,碳热还原提取金属镁过程主要由Mg2SiO4、Fe2O3、MgSiO3、MgFe2O4及少量NiO等参与反应。热力学研究表明,常压下MgFe2O4、Mg2SiO4与MgSiO3碳热还原生成金属镁蒸汽的初始温度在1373~2073K,Fe2O3、NiO碳热还原生成金属铁、镍的初始温度分别为923K、723K;在真空压力为10Pa时,MgFe2O4、Mg2SiO4与MgSiO3碳热还原生成金属镁蒸汽的初始温度均在923~1323K,Fe2O3、NiO碳热还原生成金属铁、镍的初始温度分别为673K、523K。试验结果表明,碳热还原法从红土镍矿提取金属镁过程是可行的,冷凝物含金属镁的平均含量达98.5%以上。  相似文献   

15.
高铬型钒钛磁铁精矿的煤基直接还原过程中·V2O3和FeO·Cr2O3的还原行为对其高效综合利用产生决定性的影响。采用XRD、SEM及EDS等手段对直接还原产物进行分析,分别考察碳铁摩尔比和温度对煤基直接还原-磁选分离过程中钒和铬行为的影响。结果表明:当碳铁摩尔比(n(C)/n(Fe))从0.8增大到1.4时,V和Cr的回收率分别从10.0%和9.6%增大到45.3%和74.3%。当n(C)/n(Fe)为0.8时,在1100~1250°C的温度范围内,V和Cr的回收率始终低于10.0%;而当n(C)/n(Fe)为1.2时,随着温度从1100°C升高到1250°C,V和Cr的回收率分别从17.8%和33.8%增大到42.4%和76.0%。当n(C)/n(Fe)低于0.8时,由于含碳还原剂的量不足,绝大多数FeO·V2O3和FeO·Cr2O3不能被还原成碳化物,且温度(1100~1250°C)对其还原行为的影响甚微。在更高的n(C)/n(Fe)下,由于含碳还原剂的量充足,FeO·V2O3和FeO·Cr2O3的还原率大幅提高,且更高的温度能有效地促进碳化物的生成。新生成的碳化物溶解在γ(FCC)相中,并在磁选过程中与金属铁同时回收。  相似文献   

16.
哈氏C-2000合金在800°C和1000°C的氧化行为(英文)   总被引:1,自引:0,他引:1  
研究哈氏C-2000合金在(800°C,1000 h)和(1000°C,100 h)时的氧化行为。分别利用增重法、SEM、XRD和XPS表征氧化动力学和氧化膜的形貌特征。合金在800°C和1000°C时均基本满足抛物线速率规律。此外,由于退火孪晶提高了合金化元素及氧原子的扩散速率,因此,降低了合金的高温抗氧化性能。在800°C时,氧化膜微观结构主要是由NiO和Cr1.3Fe0.7O6组成。此外,初始退火孪晶结构在氧化后依然可见,且临近氧化膜附近出现了富Mo相。然而,在1000°C时,氧化膜的微观结构由细小的铬氧化物和粗大的镍氧化物颗粒通过相互镶嵌而构成,同时,在临近氧化膜处几乎无富Mo相出现。  相似文献   

17.
研究预氧化钒钛磁铁精矿固态还原反应的动力学,采用XRD、SEM和EDS等手段研究还原产物的显微结构和物相变化,在此基础上,对其固态还原机理进行研究。结果表明:以煤为还原剂,在还原温度为950~1100°C时,预氧化钒钛磁铁精矿的固态还原受界面化学反应控制,反应的表观活化能为67.719 k J/mol;预氧化钒钛磁铁精矿的还原历程可描述为:预氧化钒钛磁铁精矿→钛铁晶石→钛铁矿→亚铁板钛矿(Fe Ti2O5)→(FenTi1-n)Ti2O5。预氧化钒钛磁铁精矿在1050°C还原60 min后,还原产物中会形成M3O5型(M为Fe、Ti、Mg、Mn等)固溶体,存在于M3O5固溶体中铁的难还原性是限制预氧化钒钛磁铁矿还原的主要原因。  相似文献   

18.
用木炭还原沸腾钢铁鳞,可获得含铁>98.5%,适合于粉末冶金用的优质铁粉.在1000℃左右的还原过程中,在金属铁出现之前,在数分钟内Fe_2O_3和Fe_3O_4几乎都已全部还原成浮士体,但后者还原成金属铁的阶段,则须经历数十分钟之久,因此后一阶段便成为还原过程中控制的一步.在浮士体还原成金属铁的阶段,所生成的多孔性金属铁并不阻碍气相的扩散;还原的速率由浮士休-金属铁相界面的表面反应所控制,而表面反应的速率则受CO的生长速率所限制。浮士体表面的金属铁层成长所需的激活能约为57000卡/克分于,与用固体碳发生CO的反应所需的激活能相同。实验的结果更指出,不同温度下浮士体还原速率个同的原因,是由温度对CO发生速率的影响所引起。  相似文献   

19.
以含镍0.82%、含铁9.67%的某硅镁型红土镍矿为原料开展氢气低温还原实验研究,考察还原温度、还原时间、氢气浓度及矿物粒度对镍、铁金属化率的影响。结果表明:在还原温度为600℃、还原时间90 min及氢气浓度为60%(体积分数)的条件下,红土镍矿中镍、铁金属化率分别达到95%和42%。当矿物粒度小于380μm时,矿物粒径对镍、铁金属化率的影响并不明显。随着还原温度的升高,镍铁合金([Fe,Ni])的衍射峰呈现先增强后减弱的趋势,在600℃时达到最大。且随着温度的进一步升高,无定型含镁硅酸盐重结晶生成镁橄榄石相,阻碍镍、铁的还原。通过氢气低温还原,矿物中的氧化镍几乎完全还原,部分铁被还原为金属铁与镍形成了镍铁合金,大部分的铁被还原为铁的低价氧化物。  相似文献   

20.
基于某钢厂现场条件,对转炉炼钢过程氧化镍直接合金化冶炼耐候钢的可行性进行了热力学分析,结果表明:铁水中固有的[C]、[Si]、[Mn]、[Fe]等均可作为还原NiO的还原剂元素,在铁水阶段和转炉阶段进行直接合金化是完全可行的。在转炉出钢温度T=1960 K,w([C])=0.04%条件下,[C]的还原能力比[Fe]强,镍的回收率可达到99.9%。并在实验室进行了相关的动力学实验研究,1573 K时,在铁水(含碳3%)条件下氧化镍的还原反应速率非常快,15 min后氧化镍还原反应基本完成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号