首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
在Gleeble-1500D热模拟实验机上对GH79合金进行热压缩模拟实验。在对于GH79合金热变形行为及微观组织演变研究的基础上,分析比较Prasad,Gegel,Malas,Murty和Semiatin 5种不同失稳判据,并绘制不同失稳判据的热加工图。从不同失稳判据的热加工图中可以看出,在温度900~930°C、应变速率5×10-4~1.8×10-1s-1和温度960~1080°C、应变速率为5×10-4~1.5×10-1s-1的两个范围内该合金的功率耗散率值大于60%,上述两个区域为GH79合金的适合成形区域。  相似文献   

2.
采用高温等温压缩试验,对Cu?Ni?Si?P合金在应变速率0.01~5?1、变形温度600~800°C条件下的高温变形行为进行了研究,得出了该合金热压缩变形时的热变形激活能Q和本构方程。根据实验数据与热加工工艺参数构建了该合金的热加工图,利用热加工图对该合金在热变形过程中的热变形工艺参数进行了优化,并利用热加工图分析了该合金的高温组织变化。热变形过程中Cu?Ni?Si?P合金的流变应力随着变形温度的升高而降低,随着应变速率的提高而增大,该合金的动态再结晶温度为700°C。该合金热变形过程中的热变形激活能Q为485.6 kJ/mol。通过分析合金在应变为0.3和0.5时的热加工图得出该合金的安全加工区域的温度为750~800°C,应变速率为0.01~0.1 s?1。通过合金热变形过程中高温显微组织的观察,其组织规律很好地符合热加工图所预测的组织规律。  相似文献   

3.
利用Gleeble-1500热模拟实验机对非真空熔铸Cu-0.94Cr-0.34Zr合金进行高温热压缩变形,研究在变形温度为500~800℃、应变速率为0.01 ~1 s-1工作条件下该合金的流变应力行为,建立合金热变形流变应力本构方程及加工图.结果表明:流变应力随变形温度的升高而降低,随应变速率的降低而减小;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系式描述Cu-0.94Cr-0.34Zr合金的热变形行为,建立本构方程,算出其激活能为418.35 kJ/mol.依据动态材料模型,建立热加工图,确定热变形失稳区和安全热加工区域,合金最佳热加工条件为:变形温度775℃,应变速率0.01s-1.  相似文献   

4.
采用热压缩实验研究Mg-8Zn-1Al-0.5Cu-0.5Mn镁合金在温度为200~350°C、应变速率为0.001~1 s-1条件下的热变形行为。结果表明,流变应力随着应变速率的增加而明显增大,随着变形温度的升高而减小。同时,采用回归分析的方法建立预测合金流变应力的模型,该模型与实验结果能较好地吻合。以动态材料模型为基础建立合金的热加工图,从加工图中可以看出,随着应变的增大,合金的非稳态区域变大,合金在高温和低应变速率下具有良好的加工性。  相似文献   

5.
Mg-10Gd-4.8Y-2Zn-0.6Zr合金本构方程模型及加工图   总被引:4,自引:3,他引:1  
采用Gleeble-1500热模拟实验机在温度为623~773K,应变速率为0.001~1s-1条件下对Mg-10Gd-4.8Y-2Zn-0.6Zr(wt%)合金进行热压缩实验,研究了该合金热变形行为及热加工特征,建立了该合金热变形时的本构方程和加工图.结果表明,该合金高温变形时的峰值应力随着应变速率的降低和变形温度的升高而显著减小;变形激活能为289.36kJ/mol;合金高温变形时存在两个失稳区,分别是变形温度为770~773K,应变速率为0.1s-1左右的区域,和变形温度小于750K,应变速率小于0.03s-1的区域;合金的最佳热加工温度为750~773K,应变速率为0.001~0.01s-1.  相似文献   

6.
在Gleeble-1500D热模拟机上采用等温压缩实验研究Zn-8Cu-0.3Ti锌合金的高温流变行为,获得锌合金在变形温度为230~380℃、应变速率为0.01~10 s-1和变形程度为50%条件下的真应力—应变曲线,根据动态材料模型(DMM)建立锌合金的热加工图。结果表明:Zn-8Cu-0.3Ti锌合金在实验条件下具有正的应变速率敏感性,流变应力随着应变速率的增大而增大,随着变形温度的升高而减小,该合金的流变应力行为可用Arrhenius方程来描述。在本研究条件下,Zn-8Cu-0.3Ti锌合金在热变形时存在一个失稳区,即应变速率0.2 s-1以上的区域;在应变速率小于0.001 s-1和340~370℃温度范围内,最大功率耗散系数为0.53,该安全区域内合金的变形机制为动态再结晶。  相似文献   

7.
在温度523~673K,应变率0.001~1s-1条件下,使用Gleeble3800热模拟机研究一种新的四元Mg-6Zn-1.5Cu-0.5Zr合金的变形行为。结果表明,流变应力随着变形温度的升高或随着应变率的下降而减小。采用依赖于应变的本构方程和前馈反向传播人工神经网络来预测流变应力,其结果与实验数据吻合很好。热加工图表明,对于经T4处理的Mg-6Zn-1.5Cu-0.5Zr合金的热加工,其最佳工作条件为温度643~673K,应变速率0.001~0.01s-1。  相似文献   

8.
在Gleeble-1500D热模拟试验机上,通过高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.03P合金在应变速率为0.01~5 s-1、变形温度为600~800℃的动态再结晶行为以及组织转变进行了研究。结果表明:在应变温度为750、800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。同时从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能(Q)为485.6 kJ/mol和热变形本构方程。根据动态材料模型计算并分析了该合金的热加工图,利用热加工图确定热变形的流变失稳区,并且获得了试验参数范围内热变形过程的最佳工艺参数,温度为750~800℃,应变速率范围为0.01~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

9.
利用应力应变曲线、热加工图,结合电子透射电子显微镜和背散射衍射技术研究在变形温度为350~510°C、应变速率为0.001~10 s-1时高钛6061铝合金的热变形行为。结果表明,该合金的热压缩变形流变峰值应力随变形温度的升高和应变速率的降低而降低;在实验参数范围内平均热变形激活能为185 k J/mol;建立了流变应力模型;该合金热变形时主要的软化机制为动态回复;根据材料动态模型获得了高钛6061铝合金的热加工图,最佳的热加工窗口温度为400~440°C,应变速率为0.001~0.1 s~(-1)。  相似文献   

10.
在Gleeble-1500热模拟实验机上对Al-6Zn-2Mg-0.2Sc-0.1Zr合金进行等温压缩试验,建立了该合金在变形温度为350~500℃、应变速率为1~10 s-1条件下的热加工图。利用光学显微镜和扫描电镜观察了不同变形程度下合金的组织和热裂纹,确定了适宜的变形参数。结果表明:Al-6Zn-2Mg-0.2Sc-0.1Zr合金高温变形的峰值应力随变形温度的升高而降低,其适宜的热加工温度和应变速率范围为:T440℃,1.4 s-1ε3.5 s-1,单道次变形量小于60%。  相似文献   

11.
The deformation behavior of a 49.8 Ni-50.2 Ti (at pct) alloy was investigated using the hot compression test in the temperature range of 700 °C–1100 °C, and strain rate of 0.001 s?1 to 1 s?1. The hot tensile test of the alloy was also considered to assist explaining the related deformation mechanism within the same temperature range and the strain rate of 0.1 s?1. The processing map of the alloy was developed to evaluate the efficiency of hot deformation and to identify the instability regions of the flow. The peak efficiency of 24–28% was achieved at temperature range of 900 °C–1000 °C, and strain rates higher than 0.01 s?1 in the processing map. The hot ductility and the deformation efficiency of the alloy exhibit almost similar variation with temperature, showing maximum at temperature range of 900 °C–1000 °C and minimum at 700 °C and 1100 °C. Besides, the minimum hot ductility lies in the instability regions of the processing map. The peak efficiency of 28% and microstructural analysis suggests that dynamic recovery (DRV) can occur during hot working of the alloy. At strain rates higher than 0.1 s?1, the peak efficiency domain shifts from the temperature range of 850 °C–1000 °C to lower temperature range of 800 °C–950 °C which is desirable for hot working of the NiTi alloy. The regions of flow instability have been observed at high Z values and at low temperature of 700 °C and low strain rate of 0.001 s?1. Further instability region has been found at temperature of 1000 °C and strain rates higher than 1 s?1 and at temperature of 1100 °C and all range of strain rates.  相似文献   

12.
The hot compression deformation behavior of Cu–3Ti–0.1Zr alloy with the ultra-high strength and good electrical conductivity was investigated on a Gleeble–3500 thermal-mechanical simulator at temperatures from 700 to 850 °C with the strain rates between 0.001 and 1 s−1. The results show that work hardening, dynamic recovery and dynamic recrystallization occur in the alloy during hot deformation. The hot compression constitutive equation at a true strain of 0.8 is constructed and the apparent activation energy of hot compression deformation Q is about 319.56 kJ/mol. The theoretic flow stress calculated by the constructed constitutive equation is consistent with the experimental result, and the hot processing maps are established based on the dynamic material model. The optimal hot deformation temperature range is between 775 and 850 °C and the strain rate range is between 0.001 and 0.01 s−1.  相似文献   

13.
Hot compression tests of 2050 Al–Li alloy were performed in the deformation temperature range of 340–500 °C and strain rate range of 0.001–10 s–1 to investigate the hot deformation behavior of the alloy. The effects of friction and temperature difference on flow stress were analyzed and the flow curves were corrected. Based on the dynamic material model, processing map at a strain of 0.5 was established. The grain structure of the compressed samples was observed using optical microscopy. The results show that friction and temperature variation during the hot compression have significant influences on flow stress. The optimum processing domains are in the temperature range from 370 to 430 °C with the strain rate range from 0.01 to 0.001 s–1, and in the temperature range from 440 to 500 °C with the strain rate range from 0.3 to 0.01 s–1; the flow instable region is located at high strain rates (3–10 s–1) in the entire temperature range. Dynamic recovery (DRV) and dynamic recrystallization (DRX) are the main deformation mechanisms of the 2050 alloy in the stable domains, whereas the alloy exhibits flow localization in the instable region.  相似文献   

14.
The hot deformation behavior of a novel imitation-gold copper alloy was investigated with Gleeble–1500 thermo-mechanical simulator in the temperature range of 650–770 °C and strain rate range of 0.001–1.0 s?1. The hot deformation constitutive equation was established and the thermal activation energy was obtained to be 249.60 kJ/mol. The processing map at a strain of 1.2 was developed. And there are two optimal regions in processing map, namely 650–680 °C, 0.001–0.01 s?1 and 740–770 °C, 0.01–0.1 s?1. Optical microscopy was employed to investigate the microstructure evolution of the alloy in the process of deformation. Recrystallized grains and twin crystals were found in microstructures of the hot deformed alloy.  相似文献   

15.
Hot deformation behavior of extrusion preform of the spray-formed Al–9.0Mg–0.5Mn–0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300–450 °C and strain rate range of 0.01–10 s?1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 °C and strain rate of 1 s?1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (>15°) was 34%. While increasing the deformation temperature to 400 °C and decreasing the strain rate to 0.1 s?1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al–9.0Mg–0.5Mn–0.1Ti alloy were in the deformation temperature range of 340–450 °C and the strain rate range of 0.01–0.1 s?1 with the power dissipation efficiency range of 38%–43%.  相似文献   

16.
The microstructure and mechanical properties of extruded Mg-Zn alloy containing Y element were investigated in temperature range of 300–450 °C and strain rate range of 0.001–1 s?1 through hot compression tests. Processing maps were used to indicate optimum conditions and instability zones for hot deformation of alloys. For Mg-Zn and Mg-Zn-Y alloys, peak stress, temperature and strain rate were related by hyperbolic sine function, and activation energies were obtained to be 177 and 236 kJ/mol, respectively. Flow curves showed that the addition of Y element led to increase in peak stress and decrease in peak strain, and indicated that DRX started at lower strains in Mg-Zn-Y alloy than in Mg-Zn alloy. The stability domains of Mg-Zn-Y alloy were indicated in two domains as 1) 300 °C, 0.001 s?1; 350 °C, 0.01–0.1 s?1 and 400 °C, 0.01 s?1 and 2) 450 °C, 0.01–0.1 s?1. Microstructural observations showed that DRX was the main restoration mechanism for alloys, and fully dynamic recrystallization of Mg-Zn-Y alloy was observed at 450 °C. The instability domain in Mg-Zn-Y alloy was located significantly at high strain rates. In addition, the instability zone width of Mg-Zn and Mg-Zn-Y alloys increased with increasing strain, and cracks, twins and severe deformation were considered in these regions.  相似文献   

17.
《Intermetallics》2000,8(9-11):1067-1074
The hot working behavior of a Fe–24 wt.% Al iron aluminide alloy processed by the powder metallurgy route has been studied in the temperature range 750–1150°C and strain rate range 0.001–100 s−1 by establishing processing maps at different strains in the range 0.1–0.5. The features in the processing maps have changed with strain suggesting that the mechanisms of hot deformation are evolving with strain. Early in the deformation (strain of 0.1), the map exhibited a single domain with a peak efficiency of power dissipation of about 44% occurring at about 1100°C and a strain rate of about 0.03 s−1. This domain represents dynamic recrystallization (DRX) of the initial material possibly causing a substantial grain refinement. With increasing strain, a bifurcation has occurred giving rise to two domains: (1) at strain rates lower than about 0.1 s−1 and temperatures above 1000°C, superplastic deformation has occurred, and (2) at strain rates higher than about 10 s−1 and temperatures above 1125°C, DRX has occurred. The material exhibited flow localization at lower temperatures and higher strain rates. On the basis of the processing maps, the optimum processing routes available for hot working of this material are outlined.  相似文献   

18.
《Intermetallics》2000,8(5-6):559-562
Superplastic behavior under the conditions of a temperature range from 850 to 1075°C and strain rates varying from 8×10−5 to 1×10−3 s−1 was investigated for Ti–33Al–3Cr–0.5Mo (wt%) alloy with a very fine grain size obtained by the multi-step thermal mechanical treatment. The results show that the TiAl-based alloy with a hot-deformed fine grain size possesses good superplasticity. It exhibits a strain rate sensitivity coefficient of 0.9 at a strain rate of 3×10−5 s−1 and temperature from 1000 to 1075°C. Moreover, the strain rate sensitivity coefficient is stable during the hot deformation, and a tensile elongation of 517% was obtained at 1075°C and a strain rate of 8×10−5 s−1. The superplastic behavior of the present fine-grained TiAl-based alloy can be explained by the local strain hardening and high m value during the tensile deformation. Microstructure evolution in the superplastic deformation was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号