首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
应用BGS 6341型电子薄膜应力分布测试仪,对硅薄膜翘曲度及应力进行了测试,结合生产工艺对其测试结果加以分析,找出应力产生的各种因素,并加以改进,有效地提升工艺生产水平及稳定性。  相似文献   

3.
有机薄膜衬底ITO透明导电膜的结构和光电特性   总被引:5,自引:0,他引:5  
我们用反应蒸发法在氧分压2×10-2Pa、衬底温度80~240℃条件下蒸发铟-锡合金,在有机薄膜衬底上制备出ITO膜,并研究了其结构和光电特性随制备衬底温度的变化.制备膜的最佳取向为(111)方向,迁移率为20.7~36.7cm2·V-1·s-1,载流子浓度为(1.7~4.4)×1020cm-3,适当调节制备参数,可得电阻率为6.63×10-4Ω·cm、在可见光区透过率达82%的有机薄膜衬底ITO膜  相似文献   

4.
SnO2/ITO复合透明导电膜研究   总被引:2,自引:0,他引:2  
宿昌厚  张治国 《半导体学报》1991,12(11):709-713,T001
在普通的真空镀膜机上,首次采用电阻加热蒸发和电子束蒸发相结合的新工艺,研制出平面的和绒面的 SnO_2/ITO复合透明导电膜.在可见光区内膜的透射率分别大于 90%和 85%,方块电阻小于 10Ω/□.用这种膜制备非晶硅太阳电池,效果令人满意,光电转换效率与日本旭消子的同类膜相同.  相似文献   

5.
直流磁控反应溅射沉积ITO透明导电膜的研究   总被引:4,自引:0,他引:4  
研究了用铟锡合金靶直流磁控反应溅射制备ITO透明导电膜。介绍了膜的制备工艺和膜的特性,讨论了成膜过程和热处理对膜的电阻率和透光率的影响。  相似文献   

6.
柔性衬底ITO导电膜的低温制备及特性研究   总被引:6,自引:0,他引:6  
用真空反应蒸发技术在有机薄膜衬底上制备出ITO透明导电薄膜,对薄膜的低温制备、结构和光电特性进行了研究,制备的薄膜为多晶膜,具有纯三氧化二铟的立方铁锰矿结构,最佳取向为(111)方向。薄膜在可见光区的最低电阻率为6.63*10^-4Ω.cm,透过率达到82%。  相似文献   

7.
在有机玻璃基底上制备ITO透明导电膜   总被引:2,自引:0,他引:2  
使用直流辉光和微波电子回旋共振两种等离子体辅助反应蒸发法在有机玻璃基底上制备了透明导电ITO膜。在实验中详细地研究了氧分压对膜的透光率和方阻的影响。由于等离子体对膜料的活化和对基片表面的轰击效应.降低了沉积温度。  相似文献   

8.
用于液晶光阀空间光调制器的ITO透明导电膜的研制   总被引:1,自引:0,他引:1  
本文介绍了ITO(Indium Tin Oxide)透明导电膜的制备工艺,对影响其光学和电学特性的因素作了分析。并讨论了透明导电的机理,在K9玻璃上制备的ITO透明导电膜,在500~600nm波长范围内,典型的峰值透过率为90%,面电阻为40~50Ω/□。用该技术制备的样品作为透明电极,在液晶光阀空间光调制器中得到了应用。  相似文献   

9.
PCB翘曲度控制   总被引:1,自引:1,他引:0  
本文从PCB的设计、物料选择、压板程序、流程操作等四个方面介绍了影响PCB弯曲度的一些因素。  相似文献   

10.
印制板翘曲度的测试方法   总被引:2,自引:0,他引:2  
介绍了国外标准和我国国家标准中有关印制板翘曲度的3种测试方法:曲率半径测试法,弓曲度测试法,扭曲度测试法,分析了不同测试方法之间的差异。  相似文献   

11.
高阻ITO基板上电化学沉积ZnO薄膜的研究   总被引:1,自引:3,他引:1  
利用电化学沉积法,以65±1℃的0.1mol/LZn(NO3)2水溶液作为电解质溶液,在方块电阻为118Ω/□的氧化铟锡(ITO)玻璃基板上制备了ZnO薄膜。利用扫描电镜观察了ZnO薄膜表面形貌,结果表明随着电极电势的降低或沉积时间的增加,ZnO薄膜表面颗粒的六方形结构逐渐明显。利用X射线衍射技术分析了阴极电势和沉积时间对ZnO薄膜择优取向的影响,结果表明ZnO薄膜的(002)择优取向是随电极电势的下降而逐渐减弱的,而且随沉积时间的增加(002)择优取向也逐渐减弱。透射光谱测量表明,实验所获得的ZnO薄膜在可见光范围内是透光的,平均透过率高达80%~90%,不同阴极电势下的禁带宽度均为3.5eV左右,且在阴极电势为-2.5V时,禁带宽度随沉积时间的增加而逐渐减小。  相似文献   

12.
研究了柔性基(聚酰亚胺)上真空蒸镀ITO薄膜的实验装置和工艺参数,给出了最佳工艺参数和实验结果。  相似文献   

13.
介绍了一种锆钛酸铅镧(PLZT)基铟锡氧化物(ITO)薄膜的湿法刻蚀法。用V(HCl)∶V(HNO3)∶V(H2O)=50∶3∶50的混合溶液对ITO进行不同温度的刻蚀试验。通过扫描电子显微镜(SEM)和X-射线能谱仪(EDS)分析表明,在35℃经30 nm/min刻蚀能得到图形边缘质量良好和表面无残留物的ITO图形;在同等条件下刻蚀的PLZT薄膜,刻蚀速率不及ITO的2%,表明该刻蚀方法具有良好的选择性。  相似文献   

14.
ITO衬底上LiTaO3薄膜的制备与介电特性   总被引:8,自引:1,他引:8  
用溶胶凝胶法在ITO衬底上制备了钽酸锂(LiTaO3)薄膜,利用XRD、SEM和AFM对薄膜的晶向、表面形态等作了表征;研究了不同溶剂对LiTaO3溶胶稳定性的影响和不同退火条件对LiTaO3薄膜结晶的影响;利用Al/LiTaO3/ITO结构,测试了薄膜的介电系数和介电损耗.结果表明:每层薄膜都晶化退火比交替使用焦化、结晶退火能生长出质量更好的LiTaO3薄膜;频率1KHz时,介电损耗约0.4,相对介电系数约53.并讨论了介电损耗增大的原因.  相似文献   

15.
ITO薄膜的溶胶-凝胶法制备   总被引:2,自引:0,他引:2  
介绍了几种用溶胶 凝胶法制备ITO薄膜的工艺方法 ,用其中一种无机的方法成功制备了ITO透明导电膜。当薄膜厚度为 30 0nm左右时 ,所得ITO薄膜在可见光区域内的平均透过率在 85 %以上 ,电阻率最低可达 0 .1 5Ω·cm。  相似文献   

16.
为了研制可用于高温环境下进行应变测量的应变层,采用脉冲激光沉积(PLD)法在陶瓷基底上制备了氧化铟锡(ITO)薄膜.研究了PLD法中不同基底温度对ITO薄膜显微结构、电学性能以及阻温特性的影响.采用X射线衍射仪(XRD)测试了薄膜的晶体结构,通过四点探针测量法测得薄膜的薄层电阻,采用场发射扫描电子显微镜(FESEM)对...  相似文献   

17.
作为导电电极材料ITO透明薄膜被广泛应用于摄像管、场致发射板、等离子体显示及液晶显示器件中。通过实验我们发现被铯激活后的ITO薄膜具有光电发射效应。本文报告了实验的基本过程及对ITO—Cs薄膜光电发射特性的测试结果。ITO—Cs薄膜的光电发射特性对大面积的光电器件、平板显示器件的发展会有很大的促进作用。  相似文献   

18.
张晓东  魏葳  杨钊  陈微微  黄林泉  田占元 《半导体光电》2019,40(2):231-233, 238
采用磁控溅射和湿法涂布技术制备了一种ITO/Ag/AgNW结构的新型复合透明导电薄膜。研究其光学、电学等性能发现:ITO/Ag/AgNW薄膜在400~700nm的平均透过率高于ITO/Ag/ITO薄膜,且方块电阻远小于ITO/Ag/ITO薄膜,达到6.9Ω/□;耐弯折性能测试后,其方块电阻约增加62%,达11.2Ω/□。研究结果表明,这种新型的复合透明导电薄膜具有低阻、高透及耐弯折良好的特性,在柔性显示领域具有一定的应用潜力。  相似文献   

19.
The crystal structure, electrical and optical properties of ZnSe thin films deposited on an In2O3:Sn (ITO) substrate are evaluated for their suitability as the window layer of CdTe thin film solar cells. ZnSe thin films of 80, 90, and 100 nm thickness were deposited by a physical vapor deposition method on Indium tin oxide coated glass substrates. The lattice parameters are increased to 5.834 Å when the film thickness was 100 nm, which is close to that of CdS. The crystallite size is decreased with the increase of film thickness. The optical transmission analysis shows that the energy gap for the sample with the highest thickness has also increased and is very close to 2.7 eV. The photo decay is also studied as a function of ZnSe film thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号