首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
太赫兹波由于其独特的性质例如瞬态性、宽带性与相干性等,而具有非常重要的学术价值和应用前景。太赫兹成像技术是太赫兹波研究中的基础和一个重要方面,可广泛应用于无损检测、安全检查、光谱分析与生命科学等领域。本文讨论了基于太赫兹波的层析成像的过程与步骤、层析成像的方式以及相关的图像数据处理方法。  相似文献   

2.
采用CMOS太赫兹波探测器的成像系统   总被引:4,自引:4,他引:0  
刘朝阳  刘力源  吴南健 《红外与激光工程》2017,46(1):125001-0125001(6)
太赫兹波成像技术在生物医疗和安全检测等领域具有广阔的应用前景。针对新一代信息技术对便携式太赫兹波成像设备的需求,设计了基于CMOS太赫兹波探测器的成像系统。该系统包括一款CMOS太赫兹波探测器、片外模数转换器(ADC)、FPGA数字信号处理器、二位步进机、四个抛物面镜和太赫兹波辐射源等。CMOS太赫兹波探测器集成了片上贴片天线以及作为检波元件的NMOS晶体管,探测器由180 nm标准CMOS工艺制成。太赫兹波探测器的输出被片外模数转换器(ADC)采集并转换为数字信号,该数字信号被FPGA采集并传输到电脑上成像。所有上述元件均被装备在印刷线路板(PCB)上以减小系统体积。该系统实现了透射式太赫兹波扫描成像而无需斩波-锁相技术,并给出在860 GHz的太赫兹波照射下隐藏在信封内部金属的成像结果。  相似文献   

3.
李运达  李琦  丁胜晖  王骐 《激光与红外》2012,42(12):1372-1376
由于太赫兹波可穿透塑料、纸张、衣服等非金属、非极性物质,较X辐射具有较低的光子能量,且计算机辅助层析成像(CT)可获得物体内部结构信息,并可重构出物体的三维图像,因此太赫兹CT受到国际广泛关注。重点介绍了近年来太赫兹CT研究重点及具体状况,并分析了存在的问题和发展趋势。可为我国太赫兹CT技术的发展提供技术借鉴。  相似文献   

4.
返波管(BWO)连续太赫兹波成像方法是一种新的无损检测方法。实验过程中把样品放在X-Z二维电控平移台上进行扫描成像,透过样品的太赫兹波强度信息由热释电探测器接收,再经由电脑成像。该文给出了应用0.71 THz的连续太赫兹波对打孔铝板、公交卡、校园卡的内部结构和对隐藏在信封内硬币等物体和信封内纸片上的铅字迹的成像实验研究事例,并且测知该系统能够分辨出最小直径为1.5 mm的小孔。并且对成像图像进行了数字图像处理,结论表明,优化处理后的图像更加直观明显,提高了连续波成像的应用能力。揭示了BWO连续太赫兹波成像系统在无损检测和安检领域是实际有效的。  相似文献   

5.
太赫兹波探测器的研究进展   总被引:1,自引:0,他引:1  
太赫兹技术涉及电磁学、半导体物理学、光电子学、材料科学以及微加工技术等多个学科.太赫兹探测器是太赫兹技术应用的关键器件之一.太赫兹电磁波独特的特点,令太赫兹技术在物体成像、射电天文、宽带移动通信、医疗诊断、环境监测等方面具有重大的科学研究价值和广阔的应用前景.文章介绍了太赫兹探测技术的原理及其应用,并在此基础上分析了太赫兹探测器件的最新进展、性能和发展趋势.  相似文献   

6.
太赫兹量子阱探测器具有皮秒级的响应时间和1 GHz以上的高速调制性能,是太赫兹快速成像和高速无线通信应用领域非常有前景的探测器.文章综述了太赫兹量子阱探测器的探测原理和设计方法、器件主要性能指标和基于该探测器的应用技术研究进展.研究表明,基于太赫兹量子阱探测器的快速成像系统可以获得物体的细节信息,有望用于安全检查和无损...  相似文献   

7.
太赫兹波具有瞬态性、宽带性、穿透性和低能性等一系列独特性质,使其在材料研究、信息传递、环境检测、国防安全、医疗服务等方面展现了非常广阔的应用前景。作为该领域应用的关键,太赫兹探测器得到科研人员极大的重视。一般来讲,探测器的性能很大程度上依赖于基质材料的特性。石墨烯具有2个非常重要的优势,一是石墨烯具有线性能带结构,使得能够吸收太赫兹波;二是石墨烯具有超高载流子迁移率,能够进行超快探测。因此,石墨烯基有望成为太赫兹频段新一代高性能探测器的基质材料。详细综述了近几年关于石墨烯基太赫兹探测器的发展状况。  相似文献   

8.
任姣姣  李丽娟  张丹丹  乔晓利 《红外与激光工程》2018,47(2):225002-0225002(6)
改性聚丙烯(PP)材料由于其阻燃、高抗冲性能等特点被广泛应用在汽车仪表板、保险杠等汽车配件中,采用无损探伤技术对改性PP材料进行检测是汽车配件质量保证的必要手段。搭建了透射式太赫兹时域光谱系统及反射式太赫兹时域光谱成像系统,采用透射式THz-TDS系统对改性PP材料的光学参数进行了检测,测定了该材料在太赫兹波段的折射率,其数值为1.53。设计了一种改性PP材料平底洞样品,采用反射式THz-TDS成像系统对其进行成像,采用了反卷积滤波技术对THz信号进行处理,提高了信号的信噪比,提出了一种基于飞行时间的太赫兹时域光谱层析成像技术,采用已测定的改性PP材料的折射率,通过飞行时间层析成像技术对该样品的太赫兹检测结果进行了三维重构,厚度测量精度为0.01mm。  相似文献   

9.
对现有的几种常见太赫兹探测技术进行了总结,介绍了探测太赫兹脉冲信号的THz-TDS技术、外差探测的相干探测技术以及基于热吸收的直接探测技术。分析了等离子波探测器相对于传统电子和光子探测器的优势,并重点介绍了以石墨烯为材料的新型太赫兹探测器的研究进展。  相似文献   

10.
太赫兹波作为一种穿透性强、具有非电离性和惧水性的电磁波,可以穿透多种非金属、非极性介质材料。太赫兹计算层析成像技术基于傅里叶中心切片定理和直线传播模型,通过记录不同投影角度下的强度数据,采用滤波反投影等重建算法获得样品三维吸收系数分布和内外部结构信息分布。随着太赫兹成像器件的不断发展和应用场景的拓展,已发展出多种照明模式、成像光路和重建算法,并已在文物保护、骨密度测量和无损检测领域开展了应用探索。概述太赫兹计算层析技术的基本原理,并从提高重建质量、分辨率和采集效率三方面具体介绍太赫兹计算层析成像技术的最新研究。  相似文献   

11.
张鹏  曹乾涛  董航荣  赵鑫  孙佳文  吴斌  刘红元 《红外与激光工程》2020,49(5):20190338-20190338-6
针对太赫兹光束的光斑直径较大和传输途径不同的现状,提出大面元太赫兹热释电探测器和多用途探测器结构研究,用于自由空间和波导传输太赫兹光束功率的测试。首先使用有限元分析软件建立太赫兹热释电探测器模型,开展热电耦合仿真设计;其次使用精密研磨抛光工艺、平面集成电路微纳米加工技术、匀胶与剥离工艺、砂轮划片技术等工艺技术,开展太赫兹热释电探测器研制;最后创新设计装配在探测器结构上的套筒与波导适配器。理论分析和实验结果表明:该方法设计的太赫兹热释电探测器具有噪声等效功率低、重复性高特点,并且解决了自由空间与波导传输太赫兹辐射功率兼容测试问题。  相似文献   

12.
太赫兹探测成像技术是一种新兴的、极具发展前景的探测技术。为了满足太赫兹探测阵列的成像要求,设计了一种结构紧凑的折射型光学镜头,并采用Tracepro软件对该光学镜头轴上及离轴无穷远点在焦平面的成像情况进行了模拟仿真,优化了光学镜头结构参数。设计的光学镜头采用HRFZ-Si作透镜材料,并在透镜表面涂覆parylene抗反薄膜,其焦距为26.2 mm,视场角为16.3°,相对孔径为1.9∶1,分辨率为20 lp/mm。  相似文献   

13.
An array of photoconductive photomixer/antenna elements as a continuous-wave terahertz source is proposed, and its radiation characteristic is studied. Employing photomixer/antenna elements in an array configuration increases available terahertz power, while each of the array elements consumes optical power less than its maximum sustainable power. A few microwatt terahertz power is achievable from a typical array structure. It is shown that the radiated beam can be steered by changing the angle between the two exciting laser beams.  相似文献   

14.
A pyroelectric detector has been built and characterised for operation within W-band. The various characteristics reported include detectivity, responsivity, NEP, polarisation sensitivity, dynamic range, linearity, and reflectivity (vswr). The pyroelectric detector performs well at these wavelengths and as the detector is inexpensive to build, and is robust, it ought to find many opportunities for use within millimetre-wave laboratories.  相似文献   

15.
热释电非制冷红外探测器由于具有可靠性高、成本低、无需制冷等优点,使其得到了广泛应用.在热释电探测器中,热绝缘结构具有红外热转换、机械支撑和热隔离等作用.良好的热绝缘结构是减小探测器热导率和改善其性能的关键.采用半导体光刻技术和牺牲层技术,在硅基底上制备了由牺牲层和Si3N4薄膜组成的微桥结构,该方法使探测器的微桥结构的...  相似文献   

16.
介绍了热释电效应和热释电红外探测阵列的工作原理及工作模式,分析了几个重要和常用热释电探测阵列的性能参数,并简述了此阵列的发展情况及其在军、民领域的应用.  相似文献   

17.
Utilization of solid-state detectors for computed tomography (CT) has been the focus of many studies. Previous phantom and clinical experiments have shown that one of the important performance parameters for the solid-state detector is the primary speed and afterglow. In this paper, we present a detailed investigation on the signal decay characteristics of the HiLight (GE Medical Systems, Milwaukee, WI) scintillating detector. The detector primary speed and afterglow are modeled by a multiexponential function and fully characterized by a set of time constants and relative strengths. The sensitivity of these parameters to X-ray photon energy, detector aging, and radiation exposure is then established and analyzed. No statistically significant variation is observed in these parameters due to changes in the above external variables. The impact of various decay time constants on CT image quality, such as spatial resolution, noise, and artifacts, is subsequently illustrated with computer simulations and phantom experiments. Finally, an algorithmic correction scheme is derived to compensate for detector afterglow. The correction scheme employs a recursive filter to remove adverse effects of the detector decay on image quality. Experimental results have shown that the correction scheme successfully restores system spatial resolution, produces a more homogeneous noise pattern, and eliminates ring-band image artifacts due to detector afterglow. The effectiveness and robustness of the correction scheme are demonstrated by extensive phantom and clinical experiments.  相似文献   

18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号