共查询到16条相似文献,搜索用时 62 毫秒
1.
利用最小自由能法研究了以3,3-二叠氮甲基氧丁环(BAMO)与四氢呋喃(THF)共聚醚(PBT)为粘结剂,高氯酸铵(AP)、黑索今(RDX)、铝粉(Al)、二硝酰胺铵(ADN)为固体填料,不同增塑剂条件下推进剂比冲变化规律。理论计算表明:以2,2-二硝基丙醇缩甲醛与2,2-二硝基丙醇缩乙醛等质量比混合物(A3)、硝化甘油与二乙二醇二硝酸酯等质量比混合物(NG/DEGDN)作增塑剂时,推进剂比冲随RDX含量变化呈抛物线形,固体填料存在最佳添加比;NG/DEGDN增塑体系推进剂比冲高于A3体系。15%ADN取代AP时,由于燃烧产物平均相对分子质量降低,推进剂比冲显著提高。 相似文献
2.
3.
4.
以富勒烯乙二胺硝酸盐和二硝酰胺铵(ADN)为原料,通过离子交换反应制备了富勒烯乙二胺二硝酰胺盐,采用紫外-可见光谱(UV-Vis)、傅里叶变换红外光谱(FT-IR)、元素分析和X射线光电子能谱(XPS)等对其结构进行了表征。结果表明,富勒烯乙二胺二硝酰胺盐的分子式为H12C60(HNCH2C H2NH2·HN(NO2)2)12。用差热分析(DTA)、差示扫描量热法(DSC)和热重-微分热重分析(TG-DTG)研究其热分解特性。DSC曲线表明富勒烯乙二胺二硝酰胺盐于150℃开始分解,热分解峰温为203℃,分解焓为1037.7 J·g-1。TG曲线表明,100~800℃范围内,总失重率49.68%,主要是N(NO2)-2分解和部分支链分解。 相似文献
5.
设计并制备了含N?脒基脲二硝酰胺盐(GUDN)和二硝酰胺铵(ADN)的硝酸酯增塑聚醚(NEPE)固体推进剂样品,测试了推进剂的燃烧性能(燃速和压强指数)、燃烧火焰结构和燃烧波温度分布,并与不含GUDN和ADN的推进剂性能进行对比。结果表明,GUDN/ADN双氧化剂对NEPE推进剂的燃烧性能有明显的影响,推进剂配方中添加ADN可提高推进剂的燃速和压强指数,含15%、20%和22.5%的ADN替换高氯酸铵(AP)可使推进剂在7.0MPa下的燃速提高25.30%、36.76%和47.69%,GUDN使推进剂在7.0 MPa下的燃速降低18.97%,而压强指数在1~15 MPa提高12.04%,而且在不同压力下含双氧化剂的NEPE推进剂的燃烧火焰结构呈多火焰结构,而且火焰的亮度随着压强的增大而变亮。 相似文献
6.
利用二硝酰胺铵(ADN)和盐酸胍在水溶液中合成了二硝酰胺胍([(NH2)2C NH2] N(NO2)2-,GDN),首次培养出了用于X射线衍射的无色透明单晶。GDN属三斜晶系,空间群为P-1,晶体结构参数为:a=0.8332(5)nm,b=0.9306(6)nm,c=0.9878(6)nm,α=84.659(11)°,β=69.213(12)°,γ=67.451(12)°,V=0.6605(7)nm3,Z=4,μ=0.159 mm-1,F(000)=344,Dcalc=1.671 g.cm-3。通过DSC和TG/DTG法研究了GDN的热行为,其中第三阶段为强烈的放热分解过程,分解反应的表观活化能和指前因子分别为118.75 kJ.mol-1和1010.86s-1。GDN热爆炸的临界温度为164.09℃。GDN比ADN有更好的热稳定性。 相似文献
7.
8.
含5,5'-联四唑-1,1'-二氧二羟铵推进剂的能量特性计算 总被引:1,自引:0,他引:1
利用国军标方法 GJB/Z84-1996及CAD系统软件,在标准条件(pc/p0=70∶1)下计算了含5,5'-联四唑-1,1'-二氧二羟铵(TKX-50)的复合改性双基(CMDB)推进剂、端羟聚丁二烯(HTPB)推进剂、硝酸酯增塑聚醚(NEPE)推进剂及聚叠氮缩水甘油醚(GAP)推进剂的能量特性。结果表明,TKX-50单元推进剂的理论比冲为2623.7 N·s·kg-1,比RDX单元推进剂的理论比冲高6.5 N·s·kg-1。TKX-50是CMDB推进剂中RDX的较好替代物。当TKX-50取代HTPB推进剂中的AP和GAP推进剂中的HMX和AP时,TKX-50基HTPB推进剂和TKX-50基GAP推进剂的理论比冲均存在能量的最优值。当TKX-50取代NEPE推进剂中的AP和HMX时,TKX-50基NEPE推进剂的理论比冲先增后降再增,最大增加20.4 N·s·kg-1。 相似文献
9.
10.
采用靶线法在3.0~15.0MPa压强范围内,研究了固含量、铝粉含量、二硝酰胺铵(ADN)的粒径及含量、燃速调节剂及热稳定剂对PGN/ADN推进剂燃烧性能的影响。结果表明,ADN的粒径(450μm,450~900μm)和含量(0%~30%)增加时,PGN/ADN推进剂的燃速和压强指数均适当增加;改变Al粉含量,PGN/ADN推进剂的燃速和压强指数均无明显变化;添加适量(0.5%)燃速调节剂Fe2O3可增加推进剂的燃速并降低压强指数,添加适量(0.5%)燃速调节剂草酰胺可有效降低压强指数。添加适量稳定剂(1%)2-硝基二苯胺(2-DNPA)和N-甲基-4-硝基苯胺(MNA)可以使推进剂的压强指数分别由0.49降低到0.34和0.40。 相似文献
11.
采用最小自由能法计算了含有氧化剂HNIW、AP和HMX及粘合剂BAMO、GAP、PET和HTPB等成分的硝酸铵(AN)基推进剂的能量特性参数,分析了上述成分对AN推进剂能量的影响。结果表明,高能化合物HNIW并不是在任何含量的粘合剂条件下提高AN基推进剂能量的幅度均高于其它氧化剂。当粘合剂含量为15%,HNIW提高推进剂能量的幅度大于HMX小于AP;粘合剂含量为5%时,HNIW提高推进剂能量幅度高于其它两种氧化剂。在低含量(〈12%)的粘合剂体系中,使用惰性粘合剂有利于提高推进剂的能量;在粘合剂含量较高(〉13%)的体系中,含能粘合剂提高能量的幅度优于惰性粘合剂,且GAP优于BAMO,每种粘合剂都有一最佳用量。 相似文献
12.
13.
三种方法研究ADN与几种粘合剂的相容性 总被引:1,自引:4,他引:1
利用真空安定性试验仪(VST) 研究了ADN与端羟基聚丁二烯(HTPB)、3,3-双叠氮甲基氧丁环与四氢呋喃(BAMO-THF)聚合物、双基粘合剂(NG NC)、聚乙二醇(PEG)、共聚醚粘合剂(PET)五种粘合剂的混合体系的相容性,还利用差示扫描量热仪(DSC)和拉瓦尔试验仪(LAWA)研究了其中的三种体系.这三种不同方法都一致判断ADN与 (NG NC)和PEG为不相容,但对AND/PET体系的相容性判断不一致,VST法判断为不相容,而LAWA和DSC法却判断为相容.从试验条件的差异,组分相互作用是发生在凝聚相还是在气相与凝聚相之间等方面,探讨了产生这种不同结论的原因. 相似文献
14.
LIJun-qiang PANGWei-qiang WANGKe XIAOLi-qun XUHui-xiang FANXue-zhong ZHANGChong-min 《含能材料》2019,27(4):297-303
设计并制备了含N?脒基脲二硝酰胺盐(GUDN)和二硝酰胺铵(ADN)的硝酸酯增塑聚醚(
NEPE)固体推进剂样品,测试了推进剂的燃烧性能(燃速和压强指数)、燃烧火焰结构和燃烧波温度分布,并与不含GUDN和ADN的推进剂性能进行对比。结果表明,GUDN/ADN
双氧化剂对NEPE推进剂的燃烧性能有明显的影响,推进剂配方中添加ADN可提高推进剂的燃速和压强指数,含15%、20%和22.5%的ADN替换高氯酸铵(AP)可使推进剂在7.0MPa
下的燃速提高25.30%、36.76%和47.69%,GUDN使推进剂在7.0MPa下的燃速降低18.97%
,而压强指数在1~15MPa提高12.04%,而且在不同压力下含双氧化剂的NEPE推进剂的燃烧火焰结构呈多火焰结构,而且火焰的亮度随着压强的增大而变亮。 相似文献
15.
用"能量计算之星"程序(ECS)计算了以3,3-二叠氮甲基氧杂环丁烷(BAMO)与3-甲基-3-叠氮甲氧基氧杂环丁烷(AMMO)的嵌段共聚物(BAMO/AMMO)为黏合剂的高能固体推进剂的能量特性。研究了添加不同增塑剂(1,5-二叠氮-3-硝基氮杂戊烷(DIANP)、聚叠氮缩水甘油醚(GAP)、N-丁基-2-硝酸酯乙基硝胺(BuN ENA))、氧化剂(高氯酸铵(AP)、六硝基六氮杂异伍兹烷(CL-20)及呋咱类化合物(3,4-二硝基呋咱基氧化呋咱(DNTF)、二硝基偶氮氧化二呋咱(DNAF)、二叠氮基偶氮氧化呋咱(DAAOF))和高能燃料(铝粉(Al)、三氢化铝(AlH 3))对推进剂能量特性参数(比冲(ISP)、燃温(Tc)、氧系数(φ),等)的影响规律。结果表明:Bu NENA增塑的推进剂比冲高于DIANP或GAP增塑的BAM O/AM M O基推进剂。Bu NENA增塑的推进剂中,随着C L-20逐步替代AP,推进剂的Tc呈现先增后减的趋势。当CL-20含量大于55%时,推进剂比冲基本保持不变,趋于最大值。当C L-20完全替代AP,比冲下降。以D N AF代替C L-20可使推进剂比冲由2723.71 N·s·kg-1提高至2798.00 N·s·kg-1。以AlH 3替代Al与CL-20,同时提高体系φ时,推进剂能量得到大幅提高。 相似文献
16.
几种钝感低特征信号推进剂的能量特性 总被引:1,自引:3,他引:1
利用能量计算程序计算了N,N′-二硝基哌嗪(DNPZ)、N-脒基脲二硝酰胺(FOX-12)、1,1-二氨基-2,2-二硝基乙烯(FOX-7)、钝感黑索今(I-RDX)、2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)、硝基胍(NQ)和1,4,5,8-四硝基-1,4,5,8-四氮杂萘烷(TTNZ)7种钝感化合物的单元推进剂及用于钝感低特征信号推进剂的能量特性。结果表明:所列的7种含能化合物中,由I-RDX、FOX-7和TTNZ形成的单元推进剂、复合改性双基推进剂及聚叠氮缩水甘油醚(GAP)基推进剂的各能量特性的综合效果均较优,随着这3种钝感含能添加剂质量分数增加,形成的双基系推进剂的理论比冲、特征速度、燃烧温度和等容爆热逐渐升高,而氧系数和燃烧产物的平均相对分子质量逐渐降低。 相似文献