首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用低温水热法在Si衬底上生长ZnO纳米棒阵列.通过X射线衍射和扫描电子显微镜对ZnO纳米棒的结晶性和形貌进行观测.结果表明,六棱柱形ZnO纳米棒沿c轴方向的阵列性良好,且均匀致密的生长在衬底上.室温光致发光谱表明应用低温水热法可以得到光学性质良好的ZnO纳米棒阵列.使用同步辐射对ZnO纳米棒阵列的氧K带边进行X射线吸收近带边谱测量,研究了不同半径ZnO纳米棒阵列的局部电子结构及其半径对电子结构的影响.另外,对ZnO纳米棒及ZnO薄膜的局部电子结构进行了对比研究.  相似文献   

2.
Well-aligned ZnO nanorod arrays with uniform diameters and lengths have been fabricated on a Si substrate by simple thermal evaporation of Cu-Zn alloy powders in the presence of oxygen without using a template, catalyst, or pre-deposited ZnO seed layer. The ZnO nanorods are characterized by X-ray diffraction, electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy and the growth mechanism is suggested. The nanorods have a single-crystal hexagonal structure and grow along the (0001) direction. Their diameters range from 200 to 400 nm and the lengths are up to several micrometers. The photoluminescence (PL) and Raman spectra disclose the optical properties of the products. The PL spectra show intense near-band ultraviolet emission at 378 nm from the nanorod arrays. The well-aligned ZnO nanorod arrays have a low turn-on field of 6.1 V/microm, suggesting good field emission properties. The simple synthesis methodology in conjunction with the good field emission and optical properties make the study both scientifically and technologically interesting.  相似文献   

3.
ZnO纳米棒Al掺杂和A1,N共掺杂的制备技术与光致发光性能   总被引:1,自引:0,他引:1  
采用水热法首先合成了Al掺杂ZnO(AZO)纳米棒,在此基础上通过550℃的氨气氛中退火制备了Al,N共掺杂ZnO(ANZ())纳米棒.运用X射线衍射(XRD),场发射扫描电镜(FESEM),透射电子显微镜(TEM),X射线能谱(EDS)和光致发光(PL)对样品进行了表征与分析.结果表明,制备的AZO和ANZ()纳米棒...  相似文献   

4.
High-density well-aligned ZnO nanorod arrays were successfully fabricated on ZnO a seed-layer coated InP (001) substrate by using pulsed laser deposition (PLD) technique without metal catalyst. SEM image showed that uniformly distributed droplet-like ZnO seed-layer was formed on the InP wafer. Well-oriented ZnO nanorods were formed perpendicular to the seed-layer coated substrate and well-separated from each other. X-ray diffraction θ-2θ scanning measurements demonstrated that the ZnO nanorods exhibited a strong c-axis orientation with high crystalline quality. The photoluminescence (PL) spectrum measurement illuminated that the ZnO nanorods produced in this work had well optical quality. The well-aligned and separated ZnO nanorods fabricated by this comparatively simple technique shed light on further applications for nanodevices.  相似文献   

5.
Well-aligned ZnO nanorods and nanopins are synthesized on a silicon substrate using a one-step simple thermal evaporation of a mixture of zinc and zinc acetate powder under controlled conditions. A self-assembled ZnO buffer layer was first obtained on the Si substrate. The structure and morphology of the as-synthesized ZnO nanorod and nanopin arrays are characterized using X-ray diffraction, and scanning and transmission electron microscopies, energy-dispersive X-ray spectroscopy, and photoluminescence spectroscopy. The influence of the background atmosphere on the two ZnO nanostructures has been studied. Two different growth mechanisms are mentioned to interpret the formation of ZnO nanorod and nanopin arrays in our work. The room-temperature PL features the ZnO nanorods exhibit only sharp and strong ultraviolet (UV) emission emissions, which confirms the better crystalline and optical quality than the ZnO nanopins.  相似文献   

6.
Lee HK  Kim MS  Yu JS 《Nanotechnology》2011,22(44):445602
We report the structural and optical properties of ZnO nanorod arrays (NRAs) grown by an electrochemical deposition process. The ZnO NRAs were grown on indium tin oxide (ITO) coated glass substrates with a thin sputtered Al-doped ZnO (AZO) seed layer and compared with ones directly grown without the seed layer. The growth condition dependence of ZnO NRAs was investigated for various synthetic parameters. The morphology and density of the ZnO NRAs were accordingly controlled by means of zinc nitrate concentration and growth time. From photoluminescence results, the ultraviolet emission was significantly enhanced after thermal treatment. For ZnO NRAs grown on ITO glass without the seed layer, the diffuse transmittance was enhanced despite the reduction in the total transmittance, indicating a high haze value. By using a thin AZO seed layer, the well-aligned ZnO NRAs on AZO/ITO glass are controllably and reproducibly synthesized by varying the growth parameters, exhibiting a total transmittance higher than 91% in the visible wavelength range as well as good optical and crystal quality.  相似文献   

7.
A facile sonochemical route was demonstrated for the direct fabrication of Fe-doped ZnO nanorod arrays on a Si substrate under ambient conditions. By adding Fe3+ ions in reaction solution, Fe is readily in situ doped into ZnO nanorod arrays via ultrasound irradiation. The morphology and structural characteristic of the Fe-doped ZnO nanorods were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). And crystal structure was characterized by X-ray diffraction (XRD) spectroscopy. Inductively-coupled plasma atomic emission spectroscopy (ICP-AES) confirmed the Fe-doping of ZnO nanorod arrays with a concentration of 0.9 wt.%. In addition, Fe-doped ZnO nanorod showed the enhancement of photoluminescence (PL) intensity in green-yellow emission.  相似文献   

8.
For the first time, aligned ZnO nanorod structured thin films have been synthesized on a glass substrate, which had been coated with an Al-doped ZnO thin film, using the sonicated sol-gel immersion method. These nanorods were found to have an average diameter of 100 nm and an average length of 500 nm, with hexagonal wurtzite phase grew preferentially along the c-axis direction. A sharp ultra-violet (UV) emission centred at 383 nm corresponding to the free exciton recombination was observed in a room temperature photoluminescence (PL) spectrum. The prepared ZnO nanorod structured thin film is transparent in the visible region with an average transmittance of 78% in the 400-800 nm wavelength range and high absorbance properties in the UV region (< 400 nm). The results indicate that the prepared ZnO nanorods are suitable for ultra-violet photoconductive sensor applications.  相似文献   

9.
We demonstrate the influence of charges near the substrate surface on vertically aligned ZnO nanorod growth. ZnO nanorods were fabricated on n-type GaN with and without H+ treatments by catalyst-free metal-organic chemical vapor deposition. The ZnO nanorods grown on n-GaN films were vertically well-aligned and had a well-ordered wurtzite structure. However, the ZnO did not form into nanorods and the crystal quality was very degraded as they were deposited on the H+ treated n-GaN films. The charge influence was also observed in the ZnO nanorod growth on sapphire substrates. These results implied that the charges near the substrate surface dominantly affected on the crystalization and formation of ZnO nanorods.  相似文献   

10.
We demonstrate the influence of charges near the substrate surface on vertically aligned ZnO nanorod growth. ZnO nanorods were fabricated on n-type GaN with and without H+ treatments by catalyst-free metal-organic chemical vapor deposition. The ZnO nanorods grown on n-GaN films were vertically well-aligned and had a well-ordered wurtzite structure. However, the ZnO did not form into nanorods and the crystal quality was very degraded as they were deposited on the H+ treated n-GaN films. The charge influence was also observed in the ZnO nanorod growth on sapphire substrates. These results implied that the charges near the substrate surface dominantly affected on the crystallization and formation of ZnO nanorods.  相似文献   

11.
Qiu J  Yu W  Gao X  Li X 《Nanotechnology》2006,17(18):4695-4698
A TiO(2) nanotube array with a large surface area is fabricated on a glass substrate using a ZnO nanorod array and sol-gel process, and the structural characteristics of the TiO(2) nanotube array are investigated. The well-aligned ZnO nanorod array, which is deposited on ZnO seed layer coated glass substrates by the wet-chemical route, is used as a template to synthesize TiO(2)/ZnO composite nanostructures through the sol-gel process. Then, by selectively removing the ZnO template, a TiO(2) nanotube with contours of the ZnO nanorods is fabricated on the ZnO seed layer coated glass. The resultant TiO(2) nanotubes are 1.5?μm long and 100-120?nm in inner diameter, with a wall thickness of ~10?nm. In addition, by adjusting the experimental parameters, such as the dip-coating cycle number or heating rate, porous TiO(2) thick films can also be obtained.  相似文献   

12.
Photoelectronic characteristics are investigated in well-aligned MgO-coated ZnO nanorods (MgO/ZnO nanocables) grown on Si substrates buffered with ZnO film at a low temperature by solution techniques. Transmission electron microscopy shows that a rough surface was observed for the MgO-coated ZnO nanorods due to deposition of MgO nanoparticles on the surface of the ZnO nanorods. However, after annealed at high temperatures, the surface of the MgO-coated ZnO nanorods was flattened to form Mg-doped ZnO nanorods. Photoluminescence spectra of Mg-doped ZnO nanorods displayed a blue shift of the near-band-edge emission with increasing annealing temperature indicative of an increase in the band gap of the MgZnO alloy due to diffusion of the Mg atoms into the ZnO nanorods. In contrast, no blue shift was detected for the samples annealed in H2/N2 (5%/95%) reduction atmosphere but a blue emission was detected at 800 degrees C, indicating that MgO diffusion process may produce a new luminescent center to emit the blue emission in H2/N2 reduction atmosphere.  相似文献   

13.
ZnO nanostructures including nanorod and nanotower were synthesized on Ag nanoisland coated Si substrate by thermal evaporation and vapor phase transport at atmospheric pressure. The as-prepared ZnO nanorods and nanotowers were single crystal growing along [0001] direction. The growth of ZnO nanostructures strongly depended on the surface morphology of the nanoisland Ag film deposited by electroless nanoelectrochemistry. The growth mechanism of the ZnO nanostructures was proposed on the basis of experimental data. A strong room-temperature photoluminescence in ZnO nanostructures has been demonstrated. The growth technique would be of particular interest for direct integration in the current silicon-technology-based optoelectronic devices.  相似文献   

14.
Large area well-aligned ZnO nanorod arrays on different substrates were synthesized by hydrothermal methods. The electron emission properties of the ZnO nanorod arrays on different substrates were investigated under both direct current (DC) and pulse electric fields. Owing to the excellent conductivity of substrates, the array on stainless steel substrate had better electron emission properties than that on silicon substrate. Under the DC and pulse electric fields, the electron emission of arrays had different production mechanisms which were pure field emission and plasma-induced emission respectively. During the plasma-induced emission, the plasma formed on the array surface, and the maximum emission current density of arrays on stainless steel was 118.87 A/cm2. The plasma-induced emission of ZnO nanorod arrays were always distributed uniformly. In this work, the results show that the ZnO nanorod arrays are expected to be applied to different electronic devices as electron beam sources under different electric fields.  相似文献   

15.
采用水热反应制备一维SnO2纳米棒阵列并表征其物相结构和微观形貌,研究了水热反应的核心工艺条件如前驱体浓度、反应时间、反应温度、反应次数以及前驱体中NaCl添加剂等对纳米棒阵列的生长和形貌的影响。结果表明:较低的前驱体浓度有利于制备大长径比的纳米棒;改变反应时间调控纳米棒的长度;改变反应温度和次数调控纳米棒的长度、直径和基底覆盖率;在前驱体中加入NaCl,可增强纳米棒的取向生长并降低其基底覆盖率。  相似文献   

16.
A simple two-step vapor phase method is presented to fabricate ZnS/ZnO hierarchical nanostructures in bulk quantities. That is ZnS nanobelts were first synthesized and then used as substrate for growth of ZnO nanorod arrays. Investigation results demonstrate that the polar surfaces of ZnS nanobelts could induce a preferred asymmetric growth of ZnO nanorods on the side surfaces. But it is believed that if the local concentration of ZnO was high enough, ZnO nanorods could also grow symmetrically on the top/bottom surface of the ZnS nanobelts. The optical property of the products was also recorded by means of photoluminescence (PL) spectroscopy.  相似文献   

17.
Y Wei  L Ke  ES Leong  H Liu  LL Liew  JH Teng  H Du  XW Sun 《Nanotechnology》2012,23(36):365704
Bridged ZnO nanorod arrays on a V-grooved Si(100) substrate were used as the photoanode of a photoelectrochemical (PEC) cell for water splitting. Photolithography followed by reactive ion etching was employed to create a V-grooved structure on a Si substrate. ZnO nanorod arrays were grown via a hydrothermal method. The light trapping and PEC properties are greatly enhanced using the bridged ZnO nanorod arrays on a V-grooved Si substrate compared with those on a flat one. Increased short circuit photocurrent density (J(SC), 0.73?mA?cm(-2)) and half-life time (1500?s) are achieved. This improved J(SC) and half-life time are 4 times and 10 times, respectively, higher than those of the ZnO nanorod arrays grown on a flat substrate. The overall PEC cell performance improvement for the V-groove grown ZnO array is attributed to the reduced light reflection and enhanced light trapping effect. Moreover, V-groove ZnO showed stronger adhesion between ZnO nanorod arrays and the substrate.  相似文献   

18.
Well-aligned ZnO nanorod arrays were synthesized by a wet chemical method on the glass substrate with ZnO thin film as seed layer prepared by pulsed laser deposition. The effect of annealing temperature on the luminescence characteristics was investigated. As the annealing temperature increased, the photoluminescence properties show a general enhancing tendency. The nanorod array with high ultraviolet emission and negligible visible light emission (designated by the photoluminescence intensity ratio of ultraviolet to visible emission of 66.4) is obtained by annealing the sample at 700 °C for 1 h. Based on the results of X-ray photoelectron spectroscopy and photoluminescence spectra, the mechanisms of visible emission were discussed.  相似文献   

19.
Graphite fiber/ZnO nanorod core-shell structures were synthesized by thermal evaporation process. The core-shell hybrid architectures were comprised of ZnO nanorods grown on the surface of graphite fiber. In addition, Hollow ZnO hierarchical structure can be obtained by oxidizing the graphite fiber. Room temperature photoluminescence (PL) of the as-made graphite fiber/ZnO nanorod structures shows two UV peaks at around 3.274 eV and 3.181 eV. The temperature-dependent photoluminescence spectra demonstrate the two UV emissions are attributed to the intrinsic optical transitions and extrinsic defect-related emissions in ZnO. These hybrid structures may be used as the building block for fabrication of nanodevices.  相似文献   

20.
We systematize experimental data on the elemental vapor-phase synthesis of zinc oxide nanocrystal arrays on substrates. This process may yield nanostructures differing in shape and dimensions, in particular, well-aligned ZnO nanorod arrays. A model is proposed in which aligned zinc oxide nanorod arrays may grow by the vapor-liquid-solid (VLS) mechanism, and liquid zinc nanodroplets forming on the substrate surface at the beginning of the process catalyze one-dimensional growth. The VLS process is accompanied by zinc oxide deposition onto the lateral surface of the nanorods from the vapor phase. The relative rates of these processes influence the shape of the nanorods and the thickness of the polycrystalline underlayer. Optimizing the deposition conditions, one can grow uniform arrays of aligned high-quality ZnO nanorods with no catalysts and with no special substrate preparation steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号