首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The complete primary structure of the mouse laminin alpha4 chain was derived from cDNA clones. The translation product contains a 24-residue signal peptide preceding the mature alpha4 chain of 1,792 residues. Northern analysis on whole mouse embryos revealed that the expression was weak at day 7, but it later increased and peaked at day 15. In adult tissues the strongest expression was observed in lung and cardiac and skeletal muscles. Weak expression was also seen in other adult tissues such as brain, spleen, liver, kidney, and testis. By in situ hybridization of fetal and newborn tissues, expression of the laminin alpha4 chain was mainly localized to mesenchymal cells. Strong expression was seen in the villi and submucosa of the developing intestine, the mesenchymal stroma surrounding the branching lung epithelia, and the external root sheath of vibrissae follicles, as well as in cardiac and skeletal muscle fibers. In the developing kidney, intense but transient expression was associated with the differentiation of epithelial kidney tubules from the nephrogenic mesenchyme. Immunohistologic staining with affinity-purified IgG localized the laminin alpha4 chain primarily to lung septa, heart, and skeletal muscle, capillaries, and perineurium.  相似文献   

2.
The dy/dy mouse is an animal model for human merosin-negative congenital muscular dystrophy (CMD), which has been reported to have reduced or no expression of the basement membrane protein laminin alpha2. We here investigate various myogenic and nonmyogenic tissues of mature dy/dy and control 129ReJ mice histologically and for laminin alpha2 expression. In addition, expression patterns of laminin alpha1, alpha2, alpha4, and alpha5 chains, the interstitial proteins fibronectin and tenascin-C, and the adhesion molecules VCAM-1, ICAM-1, and alpha4 integrin were characterized in skeletal muscle of 1- and 7-day and mature (>6 weeks old) dy/dy and control 129ReJ mice. The laminin alpha2 chain remained detectable in myogenic tissues of dy/dy mice by immunofluorescence using two different monoclonal antibodies and by Northern blot analysis. However, laminin alpha2 expression was significantly reduced or not detectable in nonmyogenic tissues of dy/dy mice, including skin, lung, kidney, brain, thymus, and eye. Focal lesions were observed in mature skeletal muscle only, characterized by necrotic tissue, isolated VCAM-1- and ICAM-1-positive cells indicative of inflammatory processes, and regenerating muscle fibers surrounded by intense tenascin-C and fibronectin expression. In contrast to studies on human CMD muscle, laminin alpha1 was not detectable in either dy/dy or control skeletal muscle using immunofluorescence or Northern blot analysis. Immunofluorescence localized laminin alpha4 to basement membranes of blood vessels, the endoneurium of the intramuscular nerves, and the neuromuscular junction in skeletal muscle of 1- and 7-day-old dy/dy and control mice. In mature muscle, laminin alpha4 expression shifted to the perineurium of intramuscular nerves in both dy/dy and control mice. Furthermore, strong upregulation of laminin alpha4 in the basement membranes of blood vessels, the perineurium of intramuscular nerves, and of isolated regenerating muscle fibers in the dy/dy mice was apparent. Investigation of 1-day-old animals revealed expression of laminin alpha5 in skeletal muscle fiber basement membranes of dy/dy but not control animals. This difference between dy/dy and control animals was no longer apparent at 7 days after birth, indicating a temporary shift in expression pattern of laminin alpha5 in dy/dy animals. Analysis of the extracellular matrix components of 1- and 7-day-old dy/dy and control skeletal muscle revealed an early onset of the dystrophy, even before histopathological features of the disease were evident. Our data confirm the absence of laminin alpha1 chain in myogenic tissues of both dy/dy and control mice and suggest compensation for reduced laminin alpha2 in dy/dy skeletal muscle by laminin alpha4 and, in early development, also laminin alpha5. These results have significant ramifications in the diagnosis of human merosin-negative CMD.  相似文献   

3.
Sickle red blood cell (RBC) adhesion to the endothelium and to exposed, underlying subendothelial proteins is believed to contribute to vascular occlusion in sickle cell disease. Laminin, a major component of the subendothelium, supports significant adhesion of sickle, but not normal RBCs. The purpose of this study was to define the adhesive region for sickle RBCs within a human laminin preparation using a flow adhesion assay designed to mimic physiologic flow through postcapillary venules. Because sickle RBCs did not adhere to the common laminin contaminants entactin or collagen type IV, neither of these proteins are likely to contribute to the observed adhesion to laminin. Known adhesive regions of laminin neither supported nor inhibited sickle RBC adhesion to laminin, suggesting a mechanism of adhesion previously uncharacterized in other laminin adhesion studies. Moreover, sickle RBCs did not adhere to mouse EHS laminin or to human laminin-2 (merosin), eliminating the alpha1, alpha2, beta1, and gamma1 chains as mediators of sickle cell adhesion. The monoclonal antibody 4C7, which binds at or near the G-domain of the laminin alpha5 chain, significantly inhibited sickle RBC adhesion. These results suggest that an adhesive region for sickle RBCs is contained within the laminin alpha5 chain.  相似文献   

4.
BACKGROUND: Laminin 2 is a major component of the basal lamina of skeletal muscle cells. It is a heterotrimer composed of 3 chains: merosin (laminin alpha 2 chain), beta 1, and gamma 1. Deficiency of merosin, with or without laminin beta 1 chain reduction, is associated with some forms of congenital muscular dystrophy. Deficient expression of laminin beta 1 chain is also associated with some cases of merosin-positive congenital muscular dystrophy. The expression of laminin 2 subunits has not been well studied in the skeletal muscle of limb-girdle muscular dystrophy (LGMD), nor has much attention been given to the significance of reduction of individual laminin 2 subunits, such as beta 1. OBJECTIVES: To examine the expression of laminin 2 subunits in skeletal muscle in patients with LGMD and to define the clinical features of patients with LGMD who have abnormal expression of laminin 2 subunits. METHODS: We studied muscle biopsy specimens from 18 patients with LGMD using immunofluorescence with antibodies against dystrophin C-terminus, beta-dystroglycan, alpha-sarcoglycan, gamma-sarcoglycan, and the laminin subunits merosin, beta 1, and gamma 1. Of the 18 biopsy specimens, 9 were available for electron microscopic examination of the muscle basement membrane. The clinical features associated with abnormal laminin beta 1 chain immunoreactivity were further described. RESULTS: Laminin beta 1 chain was either barely detectable or severely reduced in 3 cases of patients with LGMD in which the biopsy specimens showed normal staining with the other antibodies. Patients in all 3 cases had common clinical features consistent with a slowly progressive, adult-onset LGMD. Specimens from 2 of the 3 cases that were available for ultrastructural examination showed significant abnormalities of the muscle fiber basement membrane. CONCLUSIONS: Abnormal expression of laminin beta 1 chain without concomitant deficiency of alpha-sarcoglycan in skeletal muscle has not been previously described in LGMD. Reduced laminin beta 1 chain immunoreactivity may potentially serve as a marker for defining subsets of individuals with LGMD, in particular those with slowly progressive, adult-onset pelvifemoral presentation. The abnormality of muscle fiber basement membranes in specimens from cases that were available for ultrastructural study suggests that defects in the extracellular matrix may play a role in the pathogenesis of this subset of LGMD.  相似文献   

5.
Many aspects of myogenesis are believed to be regulated by myoblast interactions with specific components of the extracellular matrix. For example, laminin has been found to promote adhesion, migration, and proliferation of mammalian myoblasts. Based on affinity chromatography, the alpha7beta1 integrin has been presumed to be the major receptor mediating myoblast interactions with laminin. We have prepared a monoclonal antibody, O26, that specifically reacts with both the X1 and the X2 extracellular splice variants of the alpha7 integrin chain. This antibody completely and selectively blocks adhesion and migration of rat L8E63 myoblasts on laminin-1, but not on fibronectin. In contrast, a polyclonal antibody to the fibronectin receptor, alpha5beta1 integrin, blocks myoblast adhesion on fibronectin, but not on laminin-1. The alpha7beta1 integrin also binds to a mixture of laminin-2 and laminin-4, the major laminin isoforms in developing and adult skeletal muscle, but O26 is a much less potent inhibitor of myoblast adhesion on the laminin-2/4 mixture than on laminin-1. Based on affinity chromatography, we suggest that this may be due to higher affinity binding of alpha7X1 to laminin-2/4 than to laminin-1.  相似文献   

6.
The clustering of acetylcholine receptors (AChR) on skeletal muscle fibers is an early event in the formation of neuromuscular junctions. Recent studies show that laminin as well as agrin can induce AChR clustering. Since the alpha7beta1 integrin is a major laminin receptor in skeletal muscle, we determined if this integrin participates in laminin and/or agrin-induced AChR clustering. The alternative cytoplasmic domain variants, alpha7A and alpha7B, and the extracellular spliced forms, alpha7X1 and alpha7X2, were studied for their ability to engage in AChR clustering. Immunofluorescence microscopy of C2C12 myofibers shows that the alpha7beta1 integrin colocalizes with laminin-induced AChR clusters and to a much lesser extent with agrin-induced AChR clusters. However, together laminin and agrin promote a synergistic response and all AChR colocalize with the integrin. Laminin also induces the physical association of the integrin and AChR. High concentrations of anti-alpha7 antibodies inhibit colocalization of the integrin with AChR clusters as well as the enhanced response promoted by both laminin and agrin. Engaging the integrin with low concentrations of anti-alpha7 antibody initiates cluster formation in the absence of agrin or laminin. Whereas both the alpha7A and alpha7B cytoplasmic domain variants cluster with AChR, only those isoforms containing the alpha7X2 extracellular domain were active. These results demonstrate that the alpha7beta1 integrin has a physiologic role in laminin-induced AChR clustering, that alternative splicing is integral to this function of the alpha7 chain, and that laminin, agrin, and the alpha7beta1 integrin interact in a common or convergent pathway in the formation of neuromuscular junctions.  相似文献   

7.
We studied the distribution of laminin beta 2 chain in the skeletal muscle basement membrane of 16 patients with congenital muscular dystrophy (CMD) by immunohistochemistry. A dramatic reduction in the laminin beta 2 staining was observed in four patients with classical merosin-negative CMD. A moderate reduction of laminin beta 2 labelling was observed in four patients with partial merosin deficiency and two patients with merosin-positive CMD. Two patients with merosin-positive CMD had no apparent changes in the expression of laminin beta 2. In three patients and one fetus diagnosed as Walker-Warburg syndrome (WWS) the laminin beta 2 pattern was similar to normal controls. We conclude that a primary deficiency in the laminin alpha 2 chain may lead to a vast or moderate reduction in the laminin beta 2 chain in the skeletal muscle membrane.  相似文献   

8.
The alpha-dystroglycan binding properties of laminins extracted from fully differentiated skeletal muscle were characterized. We observed that the laminins expressed predominantly in normal adult rat or mouse skeletal muscle bound alpha-dystroglycan in a Ca2+-dependent, ionic strength-sensitive, but heparin-insensitive manner as we had observed previously with purified placental merosin (Pall, E. A., Bolton, K. M., and Ervasti, J. M. 1996 J. Biol. Chem. 271, 3817-3821). Rat skeletal muscle laminins partially purified by heparin-agarose affinity chromatography also bound alpha-dystroglycan without sensitivity to heparin. We also confirm previous studies of dystrophic dy/dy mouse skeletal muscle showing that the alpha2 chain of merosin is reduced markedly and that the laminin alpha1 chain is not up-regulated detectably. However, we further observed a quantitative decrease in the expression of laminin beta/gamma chain immunoreactivity in alpha2 chain-deficient dy/dy skeletal muscle and reduced alpha-dystroglycan binding activity in laminin extracts from dy/dy muscle. Most interestingly, the alpha-dystroglycan binding activity of residual laminins expressed in merosin-deficient dy/dy skeletal muscle was inhibited dramatically (69 +/- 19%) by heparin. These results identify a potentially important biochemical difference between the laminins expressed in normal and dy/dy skeletal muscle which may provide a molecular basis for the inability of other laminin variants to compensate fully for the deficiency of merosin in some forms of muscular dystrophy.  相似文献   

9.
The nature of the laminin alpha chains in the embryonic and adult kidney is still being debated. The present study attempted to clarify this issue by immunofluorescence study using monoclonal antibodies against mouse alpha1, alpha2, and alpha5 chains and in situ hybridization for the alpha2, alpha3B, alpha4, and alpha5 mRNAs. Novel alpha1 chain-specific monoclonal antibodies against E8 fragment revealed a restricted distribution of alpha1 chain in a subset of epithelial basement membranes in the embryo, in agreement with previous mRNA data. The alpha2 mRNA was produced by mesenchyme, although the protein was deposited in epithelial basement membranes. The alpha3B mRNA was found only in a small subset of endothelial cells. The alpha4 mRNA was found transiently in embryonic mesenchyme, with particularly high levels in condensed mesenchyme, close to the tips of the ureteric tree where tubulogenesis is initiated. The alpha5 mRNA was strongly expressed by ureter epithelium but not expressed at early stages of tubulogenesis. Immunofluorescence verified low levels of the alpha5 chain in the early stages of tubulogenesis. However, during the capillary loop stage, the alpha5 chain became strongly expressed in the developing glomerular basement membrane, which matches the in situ hybridization results. During subsequent maturation of the kidney, the alpha5 chain became ubiquitously expressed in basement membranes. Overall, the alpha5 chain exhibited the broadest pattern of expression, followed by the alpha1 chain, particularly in the adult stage. These chains were the only ones produced by epithelial cells. Although some basement membranes contained several alpha chains, we failed to detect any of the five studied chains in some basement membranes. Thus, the identity of the alpha chains of many embryonic kidney blood vessels and several basement membranes in the inner medulla in the developing and adult kidney remain unclear.  相似文献   

10.
The laminin binding alpha 7 beta 1 integrin has been described as a major integrin in skeletal muscle. The RNA coding for the cytoplasmic domain of alpha 7 integrin undergoes alternative splicing to generate two major forms, denoted alpha 7A and alpha 7B. In the current paper, we have examined the developmental expression patterns of the alpha 7A and alpha 7B splice variants in the mouse. The alpha 7 integrin expression is compared to that of the nonintegrin laminin receptor dystroglycan and to that of laminin-alpha 1 and laminin-alpha 2 chains. Alpha 7A integrin was found by in situ hybridization to be specific to skeletal muscle. Antibodies specific for alpha 7B integrin and in situ hybridization revealed the presence of alpha 7 mRNA and alpha 7B protein in the E10 myotome and later in primary and secondary myotubes. In the heart, alpha 7B integrin was not detectable in the endocardium or myocardium during embryonic and fetal heart development. Northern blot analysis and immunohistochemistry revealed a postnatal induction of alpha 7B in the myocardium. In addition to striated muscle, alpha 7B integrin was localized to previously unreported nonmuscle locations such as a subset of vascular endothelia and restricted sites in the nervous system. Comparison of the alpha 7 integrin expression pattern with that of different laminin isoforms and dystroglycan revealed a coordinated temporal expression of dystroglycan, alpha 7 integrin, and laminin-alpha 2, but not laminin-alpha 1, in the forming skeletal muscle. We conclude that the alpha 7A and alpha 7B integrin variants are expressed in a developmentally regulated, tissue-specific pattern suggesting different functions for the two splice forms.  相似文献   

11.
An arginine-specific mono-ADP-ribosyltransferase is expressed on the surface of differentiated mouse skeletal muscle cells and is anchored in the membrane via a glycosylphosphatidylinositol tail. Following incubation of intact cells with [adenylate-32P]NAD and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), a 97-kDa [32P]ADP-ribosylated protein was observed under reducing conditions and a 140-kDa complex under nonreducing conditions. The ADP-ribosylated protein was purified on a laminin affinity column. Based on its N-terminal sequence (FNLDVM-GAIRKEGEPGSLFGF) and a partial internal sequence (GLMRSEELSFVAGAP), the modified protein was identified as integrin alpha 7. Following partial trypsin digestion, a 39-kDa/79-kDa radiolabeled fragment was produced (reduced/nonreduced SDS-PAGE), narrowing the ADP-ribosylation site to a 39-kDa segment in the extracellular domain of integrin alpha 7. Labeling under optimal conditions was at least 0.4 mol of ADP-ribose/mol of integrin alpha 7. Selective expression of both ADP-ribosyltransferase and integrin alpha 7 in cardiac and skeletal muscle, a similar developmental appearance, and the apparently specific ADP-ribosylation, are consistent with a regulatory association between these proteins. ADP-ribosylation may modulate integrin receptor signaling and could play a significant role in the regulation of muscle cell function by the extracellular matrix.  相似文献   

12.
13.
Laminin-5 is an isoform of laminin that consists of alpha 3, beta 3, and gamma 2 chains and has potent cell adhesion- and cell migration-promoting activities. In this study, five subdomains in the COOH-terminal globular (G) domain of human laminin alpha 3 chain were individually expressed in Escherichia coli, and their biological activities were investigated. Recombinant G2, G4, and G5 domains promoted adhesion to plastic plates of HT1080 fibrosarcoma cells, A431 epidermoid carcinoma cells, and ECV304 vascular endothelial cells. For the cell adhesion activity, the G2 domain required a divalent cation and heat-sensitive conformation more strongly than G4 and G5. The cell adhesion to G2 but not G4 and G5 was effectively inhibited by an anti-integrin alpha 3 antibody. A cell adhesion sequence of 22 amino acids, alpha 3G2A, that was homologous to the integrin alpha 3 beta 1-binding sequence GD-6 of laminin alpha 1 chain was identified within the G2 structure. The cell adhesion to alpha 3G2A peptide was also inhibited by the anti-integrin alpha 3 antibody. The cell adhesion to G2, alpha 3G2A, G4, and G5 was strongly inhibited by heparin, but that to native laminin-5 was inhibited less effectively. Moreover, G5 potently stimulated chemotactic migration of rat liver epithelial cells in Boyden chambers, but G2 and G4 did not. These results indicate that the G domain of laminin alpha 3 contains multiple cell binding sites with different mechanisms and different functions. The G2 domain seems to recognize integrin alpha 3 beta 1, whereas G4 and G5 may interact with heparin-like molecules on cell surface.  相似文献   

14.
Laminin-2 is a component of skeletal and cardiac basal lamina expressed in normal mouse and human. Laminin alpha2 chain (LAMA2), however, is absent from muscles of some congenital muscular dystrophy patients and the dystrophia muscularis (dy/dy) mouse model. LAMA2 restoration was investigated following cell transplantation in vivo in dy/dy mouse. Allogeneic primary muscle cell cultures expressing the beta-galactosidase transgene under control of a muscular promoter, or histocompatible primary muscle cell cultures, were transplanted into dy/dy mouse muscles. FK506 immunosuppression was used in noncompatible models. All transplanted animals expressed LAMA2 in these immunologically-controlled models, and the degrees of LAMA2 restoration were shown to depend on the age of the animal at transplantation, on muscle pretreatment, and on duration time after transplantation in some cases. LAMA2 did not always colocalize with new or hybrid muscle fibers formed by the fusion of donor myoblasts. LAMA2 deposition around muscle fibers was often segmental and seemed to radiate from the center to the periphery of the injection site. Allogeneic conditionally immortalized pure myogenic cells expressing the beta-galactosidase transgene were characterized in vitro and in vivo. When injected into FK506-immunosuppressed dy/dy mice, these cells formed new or hybrid muscle fibers but essentially did not express LAMA2 in vivo. These data show that partial LAMA2 restoration is achieved in LAMA2-deficient dy/dy mouse by primary muscle cell culture transplantation. However, not all myoblasts, or myoblasts alone, or the muscle fibers they form are capable of LAMA2 secretion and deposition in vivo.  相似文献   

15.
Laminin-1, a multifunctional glycoprotein of the basement membrane, consists of three different subunits, alpha1, beta1, and gamma1 chains. Previously, we used synthetic peptides to screen for biologically active sequences in the laminin alpha1 chain C-terminal globular domain (G domain) and identified several cell binding sequences (Nomizu, M., Kim, W. H., Yamamura, K., Utani, A., Song, S. Y., Otaka, A., Roller, P. P., Kleinman, H. K., and Yamada, Y. (1995) J. Biol. Chem. 270, 20583-20590). Here, we identify new cell binding sequences on the remainder of the laminin alpha1 chain by systematic peptide screening, using 208 overlapping synthetic peptides encompassing the central and N-terminal portions of the alpha1 chain. HT-1080 cell attachment activity to the peptides was evaluated using peptide-coated plastic substrates and peptide-conjugated Sepharose beads. Twenty five peptides showed cell attachment activities on either the peptide-coated plastic substrates and/or the peptide-conjugated Sepharose beads. A-13 (RQVFQVAYIIIKA) showed strongest cell attachment activity in both the assays. Cell attachment to 14 of the peptides was inhibited by heparin. EDTA and integrin antibodies inhibited cell adhesion to two of the peptides, A-13 and A-25, suggesting that these sites likely bind to integrins. These peptides inhibited cell attachment to laminin-1 but not to collagen I, suggesting these active sites are available on the intact molecule. Most of active sequences were localized on globular domains suggesting that these structures play a critical role in binding to cell-surface receptors.  相似文献   

16.
Astrocytes secrete laminin-like molecules in culture and may represent a major source of laminin in the developing central nervous system, yet these laminins have not been extensively characterized. We previously reported the presence of an astrocyte-derived variant laminin in media conditioned by human U251 MG astrocytoma cells. This laminin was partially purified in a highly anionic Mono Q fraction with strong adhesion activity for fibroblasts and glial cells (Aukhil et al. (1990) Matrix 10: 98-111). We now show that glial laminin could be dissociated from an anionic species, perhaps an approximately 400-kDa keratan sulfate proteoglycan present in the preparation, by a second round of Mono Q anion exchange chromatography in the presence of 6 M urea. Cell adhesion activity remained tightly associated with laminin-containing fractions, suggesting that glial laminin was responsible for the adhesion activity in the original preparation. Immunochemical and SDS-PAGE gel analyses of laminin heterotrimers demonstrated that glial laminin contained the beta 2 and gamma 1 chains in disulfide-bonded heterotrimeric complexes with a 360-kDa chain, a 320-kDa chain, or a postulated approximately 200-kDa chain. While these chains were not recognized by antibodies directed against the alpha 1-, alpha 2-, or alpha 3-related laminin chains, rotary shadowed glial laminin molecules appeared to contain alpha chains, as judged by the presence of an apparent G-domain terminating the long arm of each laminin molecule. These findings suggest that glial laminin contains one or more variant alpha chains, perhaps related to one of the more recently described alpha chains, alpha 3B, alpha 4, or alpha 5. Together our results implicate human U251 MG glial laminin as a previously uncharacterized laminin isoform with strong adhesive activity for fibroblasts and glial cells.  相似文献   

17.
Disruptions in the mucosal lining of the gastrointestinal tract reseal by epithelial cell migration, a process termed restitution. We examined the involvement of laminin isoforms and their integrin receptors in restitution using the intestinal epithelial cell line T84. T84 cells express primarily laminins 5, 6, and 7 as indicated by immunostaining using laminin subunit-specific monoclonal antibodies (MAbs). A MAb (BM2) specific for the laminin alpha 3 subunit, a component of laminins 5, 6, and 7, completely inhibited the closure of mechanical wounds in T84 monolayers. Confocal microscopy using MAbs BM2 (laminin alpha 3 subunit) and 6F12 (laminin beta 3 subunit) revealed that laminin-5 is deposited in a basal matrix that extends into the wound. The MAbs 4E10 (laminin beta 1 subunit) and C4 (laminin beta 2 subunit) stained the lateral membranes between T84 cells. This staining was enhanced in cells adjoining wounds. Because T84 cells stained faintly with MAbs 4C7 (laminin alpha 1 subunit) and with MAbs 4F11 and 1B4 (laminin alpha 2 subunit), we suggest that expression of laminins 6 and 7 is enhanced in response to wounding. The alpha 3 beta 1 integrin and the alpha 6-containing integrins function in wound closure because MAbs specific for the beta 1 integrin subunit (MAb13), the alpha 3 subunit (IVA5), and the alpha 6 subunit (2B7) potently inhibited T84 migration into wounds. Immunofluorescence using UMA9, a beta 4-integrin-specific MAb, revealed that alpha 6 beta 4 integrin exists in a Triton-X-100-insoluble structure at the basal surface and that the staining of this structure is enhanced in cells adjoining wounds. In addition, a Triton-X-100-soluble pool of alpha 6 beta 4, as well as alpha 3 beta 1 and presumably alpha 6 beta 1, was found along lateral surfaces of T84 cells. On flattened cells adjoining wounds, staining for these integrins was distributed diffusely, suggesting a redistribution that accompanies cell migration. Taken together, these data suggest that wound-induced epithelial cell migration is a finely tuned process that is dependent upon the regulated function and localization of specific laminins and their integrin receptors.  相似文献   

18.
alpha7 beta1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the alpha7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with alpha7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the alpha7 beta1. alpha7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of alpha7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the alpha5 beta1 fibronectin receptor. Although cell surface expression of alpha5 beta1 was reduced by a factor of 20-25% in alpha7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of 125I-fibronectin for its surface receptor was decreased by 50% in alpha7 transfectants, indicating that the alpha5 beta1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+ restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in alpha7 transfectants. These data indicate that alpha7 expression leads to the functional down regulation of alpha5beta1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of a negative cooperativity between alpha7 and alpha5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.  相似文献   

19.
20.
Laminins are the major noncollagenous glycoproteins of all basal laminae (BLs). They are alpha/beta/gamma heterotrimers assembled from 10 known chains, and they subserve both structural and signaling roles. Previously described mutations in laminin chain genes result in diverse disorders that are manifested postnatally and therefore provide little insight into laminin's roles in embryonic development. Here, we show that the laminin alpha5 chain is required during embryogenesis. The alpha5 chain is present in virtually all BLs of early somite stage embryos and then becomes restricted to specific BLs as development proceeds, including those of the surface ectoderm and placental vasculature. BLs that lose alpha5 retain or acquire other alpha chains. Embryos lacking laminin alpha5 die late in embryogenesis. They exhibit multiple developmental defects, including failure of anterior neural tube closure (exencephaly), failure of digit septation (syndactyly), and dysmorphogenesis of the placental labyrinth. These defects are all attributable to defects in BLs that are alpha5 positive in controls and that appear ultrastructurally abnormal in its absence. Other laminin alpha chains accumulate in these BLs, but this compensation is apparently functionally inadequate. Our results identify new roles for laminins and BLs in diverse developmental processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号