首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alternative approach to maintaining indoor air quality may be the biofiltration of air circulated within the space. A biofilter with living botanical matter as the packing medium reduced concentrations of toluene, ethylbenzene, and o-xylene concurrently present at parts per billion (volume) in indoor air. The greatest reduction in concentrations per pass was under the slowest influent air flux (0.025 m s(-1)); however, the maximum amount removed per unit time occurred under the most rapid flux (0.2 m s(-1)). There was little difference between the different compounds with removal capacities of between 1.3 and 2.4 micromol m(-3) biofilter s(-1) (between 0.5 and 0.9 g m(-3) biofilter h(-1)) depending on influent flux and temperature. Contrary to biofilters subjected to higher influent concentrations, the optimal temperatures for removal by this biofilter decreased to less than 20 degrees C at the most rapid flux for all three compounds. Microbial activity was decreased at these cooler temperatures suggesting the biofilter was not microbially limited but rather was limited by the availability of substrate. The cooler temperatures allowed greater partitioning of the VOCs into the water column which had a greater impact on removal than its reduction in microbial activity.  相似文献   

2.
Perfluorinated alkyl sulfonamides (PFASs) which are used in a variety of consumer products for surface protection were investigated through a comprehensive survey of indoor air, house dust, and outdoor air in the city of Ottawa, Canada. This study revealed new information regarding the occurrence and indoor air source strength of several PFASs including N-methylperfluorooctane sulfonamidoethanol (MeFOSE), N-ethylperfluorooctane sulfonamidoethanol (EtFOSE), N-ethylperfluorooctane sulfonamide (EtFOSA), and N-methylperfluorooctane sulfonamidethylacrylate (MeFOSEA). Passive air samplers consisting of polyurethane foam disks were calibrated and used to conduct the indoor and outdoor survey. Indoor air concentrations for MeFOSE and EtFOSE (1490 and 740 pg m(-3), respectively) were about 10-20 times greater than outdoor concentrations, establishing indoor air as an important source to the outside environment. EtFOSA and MeFOSEA concentrations were lower in indoor air (40 and 29 pg m(-3) respectively) and below detection in outdoor air samples. For indoor dust, highest concentrations were recorded for MeFOSE and EtFOSE with geometric mean concentrations of 110 and 120 ng g(-1), while concentrations for EtFOSA and MeFOSEA were below detection and 7.9 ng g(-1) respectively. MeFOSE and EtFOSE concentrations in house dust followed levels in indoor air. However, resolution of the coupled air and dust data (for the same homes) was not successful using existing KoA-based models for surface-air exchange. The partitioning to house dust was greatly underpredicted. The difficulties with existing models may be due to the high activity coefficient of PFASs in octanol and/or a situation where the dust is greatly oversaturated with respect to the air due to components of the dust being contaminated with PFASs. A human exposure assessment based on median air and dust concentrations revealed that human exposure through inhalation (100% absorption assumed) and dust ingestion were approximately 40 and approximately 20 ng d(-1), respectively. However, for children the dust ingestion pathway was dominant and accounted for approximately 44 ng d(-1).  相似文献   

3.
4.
Dichlorvos (2,2-dichlorovinyl phosphate, DDVP) is a widely used organophosphorus insecticide. DDVP may be released into the atmosphere, where it may be transported for long distances and undergo chemical transformations. The mechanisms of the atmospheric reactions of DDVP have not been fully understood because of the short lifetime of its oxidized radical intermediates and the extreme difficulty in the detection of these species experimentally. In this paper, we carried out molecular orbital theory calculations for the OH-initiated atmospheric photooxidation of DDVP. The profile of the potential energy surface was constructed, and the possible channels involved in the reaction are discussed. Several energetically favorable reaction pathways are revealed for the first time. The calculated results were compared with the available experimental observations. Four product pathways are energetically feasible for DDVP degradation initiated by OH radicals in the atmosphere and are consistent with the experimentally observed products CCl2O and CO, but the additional products CCl2CHO, (CH3O)2P(O)OH, HO2, and a closed-shell organophosphorus compound denoted P10 are also predicted.  相似文献   

5.
Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured in air (using PUF disk passive samplers) in 31 homes, 33 offices, 25 cars, and 3 public microenvironments. Average concentrations of sigmaBDE (273 pg m(-3)) and sigmaPCB (8920 pg m(-3)) were an order of magnitude higher than those previously reported for outdoor air. Cars were the most contaminated microenvironment for sigmaBDE (average = 709 pg m(-3)), but the least for sigmaPCB (average = 1391 pg m(-3)). Comparison with data from a previous spatially consistent study, revealed no significant decline in concentrations of sigmaPCB in indoor air since 1997-98. Concentrations in indoor dust from 8 homes were on average 215.2 ng sigmaBDE g(-1), slightly higher than other European dust samples, but twenty times lower than Canadian samples. Inhalation makes an important contribution (between 4.2 and 63% for adults) to overall UK exposure to sigmaPCB. For sigmaBDE, dust ingestion makes a significant but--in contrast to Canada-a not overwhelming contribution (up to 37% for adults, and 69% for toddlers). Comparison of UK and Canadian estimates of absolute exposure to sigmaBDE suggest that differences in dust contamination are the likely cause of higher PBDE body burdens in North Americans compared to Europeans.  相似文献   

6.
The technical feasibility, mechanisms, and performance of degradation of aqueous diuron (22 mg/L) have been studied at pilot scale in two well-defined photocatalytic systems of special interest because natural UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. Equivalent pilot-scale (made up of Compound Parabolic Collectors (CPCs) specially designed for solar photocatalytic applications) and field conditions used for both allowed adequate comparison of the degree of mineralization and toxicity achieved as well as the transformation products generated en route to mineralization by both systems. Total disappearance of diuron is attained by both phototreatments in 45 min. 100% of chlorine was recovered as chloride, but total recovery of nitrogen as inorganic ions was not attained. 90% of mineralization was reached after 200 min of photocatalytic treatment, but toxicity measured by two different bioassays (Daphnia magna and a Microalga) was reduced to below the threshold (EC50%) in a shorter time. Transformation products evaluated by LC-IT-MS by direct injection of the samples were the same in both cases. The main differences between the two processes were in the amount of transformation products (DPs) generated, not in the DPs detected, which were always the same.  相似文献   

7.
Acrolein, a volatile, unsaturated aldehyde, is a known respiratory toxicant and one of the 188 most hazardous air pollutants identified by the U.S. EPA. A newly developed analytical method was used to determine residential indoor air concentrations of acrolein and other volatile aldehydes in nine homes located in three California counties (Los Angeles, Placer, Yolo). Average indoor air concentrations of acrolein were an order of magnitude higher than outdoor concentrations at the same time. All homes showed similar diurnal patterns in indoor air concentrations, with acrolein levels in evening samples up to 2.5 times higherthan morning samples. These increases were strongly correlated with temperature and cooking events, and homes with frequent, regular cooking activity had the highest baseline (morning) acrolein levels. High acrolein concentrations were also found in newly built, uninhabited homes and in emissions from lumber commonly used in home construction, suggesting indoor contributions from off-gassing and/or secondary formation. The results provide strong evidence that human exposure to acrolein is dominated by indoor air with little contribution from ambient outdoor air.  相似文献   

8.
9.
The modulation of the yield distribution of intermediates formed in the photocatalytic degradation of organic pollutants is of extreme importance for the application of photocatalysis in environmental cleanup, as different intermediates usually exhibit distinct biological toxicity and secondary reactivity. In this paper, we report that the distribution of monohydroxylated intermediates (m-, p- and o-) formed during the photocatalytic oxidation of aromatic compounds changes with the variation of reaction conditions, such as O(2) partial pressure and substrate concentration. By detailed product analysis, theoretical calculation, and oxygen isotope labeling experiments, we show that these changes are due to the selective reduction of HO-adduct radicals (the precursors of hydroxylated intermediates) by conduction band electrons (e(cb)(-)) back to the original substrate, that is, p- and o-HO-adduct radicals are more susceptible to e(cb)(-) than the m- one. Our experiments give an example that, even under oxidative conditions, the yield distribution of isomeric intermediates can be modulated by e(cb)(-)-initiated reduction. This study also illustrates that the unique redox characteristics of photocatalysis, that is, both oxidation and reduction reactions take place on or near the surface of a single nanoparticle, can provide opportunities for the reaction control.  相似文献   

10.
11.
Ilknur Alibas 《LWT》2007,40(8):1445-1451
Pumpkin slices (Cucurbita maxima) which weighs 50 g with moisture of 9.31 g water/g dry solids, were dried using three drying methods, microwave, air and combined microwave-air. Drying continued until slice moisture reduced to 0.1 g water/g dry solids. Two different microwave output powers 160 and 350 W were used in the microwave drying. Drying treatments in air-drying were 50 and 75 °C and 1 m/s fan speed. The combination drying in which microwave and air-drying were applied together was four different combination levels. Drying periods lasted 125-195, 45-90 and 31-51 min for microwave, air and combined microwave-air-drying, respectively, depending on the drying level. Energy consumption was 0.23-0.34, 0.61-0.78 and 0.29-0.42 kW h, respectively. In this study, measured values were compared with predicted values obtained from Page's semi-empirical equation. Optimum drying period, colour and energy consumption was obtained when microwave and air-drying was applied simultaneously and the optimum combination level was 350 W microwave applications at 50 °C.  相似文献   

12.
Exposure to indoor air pollution from household energy use depends on fuel, stove, housing characteristics, and stove use behavior. We monitored three important indoor air pollutants-respirable particles (RPM), carbon monoxide (CO), and sulfur dioxide (SO2)-for a total of 457 household-days in four poor provinces in China (Gansu, 129 household-days; Guizhou, 127 household-days; Inner Mongolia, 65 household-days; and Shaanxi, 136 household-days), in two time intervals during the heating season to investigate spatial and temporal patterns of pollution. The two provinces where biomass is the primary fuel (Inner Mongolia and Gansu) had the highest RPM concentrations (719 microg/m3 in the single cooking/living/bedroom in Inner Mongolia in December and 351-661 microg/m3 in different rooms and months in Gansu); lower RPM concentration were observed in the primarily coal-burning provinces of Guizhou and Shaanxi (202-352 microg/m3 and 187-361 microg/m3 in different rooms and months in Guizhou and Shaanxi, respectively). Inner Mongolia and Gansu also had higher CO concentrations (7.4 ppm in the single cooking/living/bedroom in Inner Mongolia in December and 4.8-11.3 ppm in different rooms and months in Gansu). Among the two primarily coal-burning provinces, Guizhou had lower concentrations of CO than Shaanxi (1.2-1.8 ppm in Guizhou vs 2.0-13.3 ppm in different rooms and months in Shaanxi). In the two coal-burning provinces, SO2 concentrations were substantially higher in Shaanxi than in Guizhou. Relative concentrations in different rooms and provinces indicate that in the northern provinces heating is an important source of exposure to indoor pollutants from energy use. Day-to-day variability of concentrations within individual households, although substantial, was smaller than variation across households. The implications of the findings for designing environmental health interventions in each province are discussed.  相似文献   

13.
Twelve polycyclic aromatic hydrocarbons were simultaneously measured in indoor and outdoor air of eight homes in Hangzhou, China in both summer and autumn in 1999. It was observed that the sum of PAHs concentrations in indoor air were ranged from 1.418 to 20.466 micrograms/m3 in summer and from 3.897 to 29.852 micrograms/m3 in autumn; the corresponding concentrations in outdoor air were between 1.380 and 20.468 micrograms/m3 in the summer and between 2.721 and 30.678 micrograms/m3 in autumn. The PAHs concentrations in indoor air generally exceeded that in the corresponding outdoor air. It was indicated that the two-, three-, and four-ring PAHs were predominantly in vapor phase, while the five-ring PAHs were primarily associated with the particulate phase. The fraction of PAHs in vapor phase will increase with the increase of temperature. Among the 12 PAHs, naphthalene was the most abundant PAHs found in indoor and outdoor air. Both in summer and autumn, it contributed more than 60% to the sum of PAHs. Because of the different functions and ventilation conditions, the concentrations of PAHs in the rooms were bedroom > kitchen > living room > balcony. By the contrast of BaP concentrations in smoker and nonsmoker's homes, we know that smoking in indoors could contribute 67% of BaP to the homes.  相似文献   

14.
Thermal catalytic oxidation (TCO) technology can continuously degrade formaldehyde at room temperature without added energy. However, there is very little knowledge on the TCO kinetic reaction mechanism, which is necessary in developing such air cleaners and in comparison with other air cleaning techniques. This paper addresses the problem of a novel TCO catalyst, Pt/MnO(x)-CeO(2). The experiments measuring the outlet concentrations of formaldehyde and other possible byproducts were conducted at temperatures of 25, 40, 60, 100, and 180 °C and at a series of inlet formaldehyde concentrations (280-3000 ppb). To measure the concentrations precisely and real timely, proton transfer reaction-mass spectrometry (PTR-MS) was used. We found the following from the experimental results: (1) no byproducts were detected; (2) the bimolecular L-H kinetic model best described the catalytic reaction rate; (3) the activation energy of the oxidation was about 25.8 kJ mol(-1); (4) TCO is most energy efficient at room temperature without auxiliary heating; (5) compared with photocatalytic oxidation (PCO) which needs ultraviolet light radiation, the reaction area of TCO can be much larger for a given volume so that TCO can perform much better not only in formaldehyde removal efficiency but also in energy saving.  相似文献   

15.
Two-day average concentrations of 15 individual volatile organic compounds (VOCs) were measured concurrently in (a) ambient air in three urban neighborhoods, (b) air inside residences of participants, and (c) personal air near the breathing zone of 71 healthy, nonsmoking adults. The outdoor (O), indoor (I), and personal (P) samples were collected in the Minneapolis/St. Paul metropolitan area over three seasons (spring, summer, and fall) in 1999 using charcoal-based passive air samplers (3M model 3500 organic vapor monitors). A hierarchical, mixed-effects statistical model was used to estimate the mutually adjusted effects of monitor location, community, and season while accounting for within-subject and within-time-index (monitoring period) correlation. Outdoor VOC concentrations were relatively low compared to many other urban areas, and only minor seasonal differences were observed. A consistent pattern of P > I > O was observed across both communities and seasons for 13 of 15 individual VOCs (exceptions were carbon tetrachloride and chloroform). Results indicate that ambient VOC measurements at central monitoring sites can seriously underestimate actual exposures for urban residents, even when the outdoor measurements are taken in their own neighborhoods.  相似文献   

16.
Hexabromocyclododecanes (alpha-, beta-, and gamma-HBCDs) and tetrabromobisphenol-A (TBBP-A) were determined in indoor air from homes (n=33; median concentrations sigma HBCDs = 180 pg m(-3); TBBP-A = 15 pg m(-3)), offices (n=25; 170; 11), public microenvironments (n=4; 900; 27) and outdoor air (n=5; 37; 1). HBCDs and TBBP-A were also determined in dust from homes (n=45; median concentrations sigma HBCDs = 1300 ng g(-1); TBBP-A = 62 ng g(-1)), offices (n=28; 760; 36), cars (n=20; 13,000; 2), and public microenvironments (n=4; 2700; 230). While sigma HBCDs in car dust significantly exceeded (p < 0.05) those in homes and offices, TBBP-A in car dust was significantly lower (p < 0.05) than that in homes and offices. No significant differences were observed between sigma HBCDs and TBBP-A in air or dust from homes and offices. Compared to dietary and inhalation exposures, dust ingestion constitutes an important pathway of exposure to HBCDs and TBBP-A for the UK population. Specifically, using average dust ingestion rates and concentrations in dust, dust ingestion constitutes for adults 34% (TBBP-A) and 24% (HBCDs) of overall exposure, and for toddlers 90% (TBBP-A) and 63% (HBCDs). Inhalation appears a minor exposure pathway to both HBCDs and TBBP-A. On average, dust is 33% alpha-, 11% beta-, and 56% gamma-HBCD, while air is 22% alpha-, 11% beta-, and 65% gamma-HBCD.  相似文献   

17.
18.
A flow-through pilot-scale system was tested for removal of Cr(VI) from contaminated groundwater in Glendale, California. The process consisted of the reduction of Cr(VI) to Cr(lll) using ferrous sulfate followed by coagulation and filtration. Results indicated that the technology could reduce influent Cr(VI) concentrations of 100 microg L(-1) to below detectable levels and also remove total Cr (Cr(VI) plus Cr(lll)) to very low concentrations (< 5 microg L(-1)) under optimized conditions. Complete reduction of Cr(VI) to Cr(lll) was accomplished with Fe(ll) doses of 10-50 times the Cr(Vl) concentration even in the presence of significant dissolved oxygen levels. The overall Cr removal efficiency was largely determined by the filterability of Cr(lll) and Fe(lll) precipitates, of which a relatively high filtration pH (7.5-7.6) and high filter loading rate (6 gpm ft(-2)) had negative impacts. The pilot system was able to operate for an extended time period (23-46 h depending on the Fe:Cr mass ratio) before turbidity breakthrough or high head loss. Backwash water was effectively settled with low doses (0.2-1.0 mg L(-1)) of high molecular weight polymer. Backwash solids were found to be nonhazardous bythe toxicity characteristic leaching procedure but hazardous by the California waste extraction test.  相似文献   

19.
Per- and polyfluorinated compounds (PFCs) have been found to be ubiquitously distributed in human populations, however the sources of human exposure are not fully characterized. A wide range of PFCs were determined in paired samples of indoor air and dust from 41 Norwegian households. Up to 18 ionic and 9 neutral PFCs were detected. The concentrations found are comparable to or lower than what has previously been reported in North America, Europe, and Asia. The highest median concentrations in dust were observed for perfluorohexanoic acid (28 ng/g), perfluorononanoic acid (23 ng/g), perfluorododecanoic acid (19 ng/g), and perfluorooctanoic acid (18 ng/g). However, perfluoroalkyl sulfonic acids (PFSAs) were also frequently detected. Fluortelomer alcohols were the most prominent compounds found in indoor air, with median concentrations for 8:2 fluortelomer alcohol, 10:2 fluortelomer alcohol, and 6:2 fluortelomer alcohol of 5173, 2822, and 933 pg/m(3) air, respectively. All perfluoroalkyl sulfonamides and sulfonamidoethanols (FOSA/FOSEs) were detected in more than 40% of the air samples. For the first time, significant positive correlations (p < 0.05) between PFSAs in house dust and FOSA/FOSEs in the indoor air have been shown, supporting the hypothesis that FOSA/FOSEs may be transformed to PFSAs. Further, we found the age of the residence to be a predictor of PFC concentrations in both indoor air and house dust. These results are important for estimating the exposure to PFCs from the indoor environment and for characterization of exposure pathways.  相似文献   

20.
Arsenic removal efficiencies of 43 household sand filters were studied in rural areas of the Red River Delta in Vietnam. Simultaneously, raw groundwater from the same households and additional 31 tubewells was sampled to investigate arsenic coprecipitation with hydrous ferric iron from solution, i.e., without contact to sand surfaces. From the groundwaters containing 10-382 microg/L As, < 0.1-48 mg/L Fe, < 0.01-3.7 mg/L P, and 0.05-3.3 mg/L Mn, similar average removal rates of 80% and 76% were found for the sand filter and coprecipitation experiments, respectively. The filtering process requires only a few minutes. Removal efficiencies of Fe, phosphate, and Mn were > 99%, 90%, and 71%, respectively. The concentration of dissolved iron in groundwater was the decisive factor for the removal of arsenic. Residual arsenic levels below 50 microg/L were achieved by 90% of the studied sand filters, and 40% were even below 10 microg/L. Fe/As ratios of > or = 50 or > or = 250 were required to ensure arsenic removal to levels below 50 or 10 microg/L, respectively. Phosphate concentrations > 2.5 mg P/L slightly hampered the sand filter and coprecipitation efficiencies. Interestingly, the overall arsenic elimination was higher than predicted from model calculations based on sorption constants determined from coprecipitation experiments with artificial groundwater. This observation is assumed to result from As(lll) oxidation involving Mn, microorganisms, and possibly dissolved organic matter present in the natural groundwaters. Clear evidence of lowered arsenic burden for people consuming sand-filtered water is demonstrated from hair analyses. The investigated sand filters proved to operate fast and robust for a broad range of groundwater composition and are thus also a viable option for mitigation in other arsenic affected regions. An estimation conducted for Bangladesh indicates that a median residual level of 25 microg/L arsenic could be reached in 84% of the polluted groundwater. The easily observable removal of iron from the pumped water makes the effect of a sand filter immediately recognizable even to people who are not aware of the arsenic problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号