首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《能源学会志》2020,93(1):425-435
A higher amount of oxygenates is the main constraint for higher yield and quality of aromatics in catalytic pyrolysis while a study of hydrocarbon production with a balance of reactive species lies importance in the catalytic upgrading of pyrolytic vapor. Catalytic pyrolysis of pinewood sawdust over acidic (ZSM-5) and basic (CaO) catalyst was conducted by means of Py-GC/MS to evaluate the effect of biomass to catalyst loading ratio on aromatic hydrocarbon production. Catalytic pyrolysis with four different biomass to catalyst ratios (0.25:1, 0.5:1, 1:1, and 2:1) and non-catalytic pyrolysis were conducted. It has been obtained that ZSM-5 showed better catalytic activity in terms of a high fraction of aromatic hydrocarbon. The ZSM-5 catalyst showed a potential on the aromatization as the yield of aromatic hydrocarbon was increased with a higher amount of ZSM-5 catalyst and the highest yield of aromatics (42.19 wt %) was observed for biomass to catalyst ratio of 0.25:1. On the other hand, basic CaO catalyst was not selective to aromatic hydrocarbon from pinewood sawdust but explored high deacidification reaction in pyrolytic vapor compared to ZSM-5 catalyst, whereas non-catalytic pyrolysis resulted in acidic species (13.45 wt %) and phenolics (46.5 wt %). Based on the results, ZSM-5 catalyst can only be suggested for catalytic pyrolysis of pinewood sawdust for aromatic hydrocarbon production.  相似文献   

2.
《能源学会志》2020,93(1):303-311
Pyrolysis of Ulva prolifera macroalgae (UM), an aquatic biomass, was carried out in a fixed-bed reactor in the presence of three zeolites based catalysts (ZSM-5, Y-Zeolite and Mordenite) with the different catalyst to biomass ratio. A comparison between non-catalytic and catalytic behavior of ZSM-5, Y-Zeolite and Mordenite catalyst in the conversion of UM showed that is affected by properties of zeolites. Bio-oil yield was increased in the presence of Y-Zeolite while decreased with ZSM-5 and Mordenite catalyst. Maximum bio-oil yield for non-catalytic pyrolysis was (38.5 wt%) and with Y-Zeolite catalyst (41.3 wt%) was obtained at 400 °C respectively. All catalyst showed a higher gas yield. The higher gas yield might be attributed to that catalytic pyrolysis did the secondary cracking of pyrolytic volatiles and promoted the larger small molecules. The chemical components and functional groups present in the pyrolytic bio-oils are identified by GC–MS, FT-IR, 1H-NMR and elemental analysis techniques. Phenol observed very less percentage in the case of non-catalytic pyrolysis bio-oil (9.9%), whereas catalytic pyrolysis bio-oil showed a higher percentage (16.1%). The higher amount of oxygen present in raw biomass reduced significantly when used catalyst due to the oxygen reacts with carbon and produce (CO and CO2) and water.  相似文献   

3.
The present study is aimed to investigate the upgrading of beech sawdust pyrolysis bio-oil through catalytic cracking of its vapors over Fe-modified ZSM-5 zeolite in a fixed bed tubular reactor. The zeolite supported iron catalyst was successfully prepared with varying metal loading ratios (1, 5, 10 wt%) via dry impregnation method and further characterized by BET, XRD, and SEM-EDX techniques. TG/FT-IR/MS analysis was used for the detection of biomass thermal degradation. Product yields of non-catalytic and catalytic pyrolysis experiments were determined and the obtained results show that bio-oil yields decreased in the presence of catalysts. Besides, the bio-oil composition is characterized by GC/MS. It was indicated that the entity of the ZSM-5 and Fe/ZSM-5 catalyst reveal a significant enhancement quality of the pyrolysis products in comparison with non-catalytic experiment. The catalyst increased oxygen removal from the organic phase of bio-oil and further developed the production of desirable products such as phenolics and aromatic compounds.  相似文献   

4.
《能源学会志》2019,92(5):1348-1363
In order to understand the pyrolysis mechanism, reaction kinetic and product properties of biomass and select suitable agricultural and forestry residues for the generation desired products, the pyrolysis and catalytic pyrolysis characteristics of three main components (hemicellulose, cellulose, and lignin) of biomass were investigated using a thermogravimetric analyzer (TGA) with a fixed-bed reactor. Fourier transform infrared spectroscopy (FTIR) and elemental analysis were used for further characterization. The results showed that: the thermal stability of hemicellulose was the worst, while that of cellulose was higher with a narrow range of pyrolysis temperatures. Lignin decomposed over a wider range of temperatures and generated a higher char yield. After catalytic pyrolysis over HZSM-5 catalyst, the conversion ratio increased. The ratio for the three components was in the following order: lignincellulose < biomass < xylan. The Starink method was introduced to analyze the thermal reaction kinetics, activation energy (Ea), and the pre-exponential factor (A). The addition of HZSM-5 improved the reactivity and decreased the activation energy in the following order: xylan (30.54%) > biomass(15.41%) > lignin (14.75%) > cellulose (6.73%). The pyrolysis of cellulose gave the highest yield of bio-oil rich in levoglucosan and other anhydrosugars with minimal coke formation. Xylan gave a high gas yield and moderate yield of bio-oil rich in furfural, while lignin gave the highest solid residue and produced the lowest yield of bio-oil that was rich in phenolic compounds. After catalytic pyrolysis, xylan gave the highest yield of monocyclic aromatic hydrocarbons, 76.40%, and showed selectivity for benzene and toluene. Cellulose showed higher selectivity for xylene and naphthalene; however, lignin showed enhanced for selectivity of C10 + polycyclic aromatic hydrocarbons. Thus, catalytic pyrolysis method can effectively improve the properties of bio-oil and bio-char.  相似文献   

5.
In this study, sawdust was selected as the raw material for biomass pyrolysis to obtain organic products. The catalyst was modified with two elements (Fe and Zn). Through analysis of the catalytic products, we attempted to identify a pyrolysis catalyst that can improve the yield of aromatic hydrocarbon products. ZSM-5, modified with Fe and Zn, was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and Brunauer–Emmett–Teller (BET) measurements. Tube furnace and flash pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) were used to comprehensively investigate the characteristics of the products of biomass pyrolysis. The highest yield of phenols was obtained using the Fe-modified ZSM-5 catalyst, which was 18.30% higher than the yield obtained by the pure ZSM-5 catalyst. The lowest yield of acid products was obtained by single-metal-supported catalytic pyrolysis with Fe or Zn, which was 50.66% lower than the yield obtained by direct pyrolysis. During the pyrolysis of biomass using metal-modified catalysts, the production of aromatic hydrocarbons was greatly improved. Among them, compared with direct pyrolysis, the Fe-Zn co-modified ZSM-5 catalyst exhibited the weakest promotion of aromatic hydrocarbon formation, but there was still a 68.50% improvement. Although the co-modified catalyst did not show absolute advantages under the conditions used for this experiment, the improvements in the production of aromatics and phenolic products also showed its potential for improving bio-oil products. Under the action of Fe-modified catalysts, the most abundant components in the gas product were CO and CO2, which reached levels as high as 53.45% and 15.34%, respectively, showing strong deoxidation capabilities. Therefore, Fe-modified ZSM-5 catalysts were found to better promote the formation of aromatic hydrocarbon products of biomass pyrolysis.  相似文献   

6.
Upgrading of pyrolysis bio-oil by a novel catalytic hydrotreating process, including hydrodeoxygenation (HDO) and hydrodenitrogenation (HDN) was found as an effective technical method for the improvement of biofuel characteristics. In this study, for the first time, the performance of a novel meso-microporous composite material, HMS-ZSM-5, as a support on the catalytic activity of NiMo-based catalysts in the bio-oil hydrotreating was evaluated. The experiments were carried out in a flow fixed-bed reactor at the temperature range of 300–360 °C, 30 bar pressure, and LHSV = 4 h-1. Also, the results were and compared with those of HMS, ZSM-5, and γ-Al2O3 supports. For all catalysts, the increase in temperature resulted in the enhancement of HDO and HDN reactions efficiency. NiMo/HMS-ZSM-5 possessed a high acid property which contributed to the removal of oxygen and nitrogen from bio-oil, with the conversion of 84.10% and 69.60%, respectively. Therefore, the novel catalyst of this study represented much superior upgrading performances compared with those of stand-alone NiMo/HMS and NiMo/ZSM-5 catalysts and also the conventional catalyst of NiMo/γ-Al2O3.  相似文献   

7.
Catalytic pyrolysis has recently aroused great interest for the high potential in upgrading bio-oils as renewable energy. However, conventional catalysts often exert diffusion resistance to large intermediate oxygenates. In this study, Fe-modified hierarchical ZSM-5 prepared by alkali and Fe loading of 2, 4, 6, 8 wt% were characterized by the analysis of XRD, BET, TEM, and NH3-TPD. Catalytic pyrolysis of poplar sawdust via Fe-modified hierarchical ZSM-5 was conducted using Py-GC/MS and TG-FTIR. The results indicated that alkali treatment and Fe loading of the catalyst introduced a hierarchical and porous structure and improved its acidity, leading to high mono-aromatics and olefins selectivity. The hierarchical ZSM-5 with 4 wt% Fe loading exhibited superior performance with high selectivity towards mono-aromatics of 15.30%. TG-FTIR analysis shows the volatiles release characteristics and FTIR spectra were consistent with pyrolysis behavior. Kinetic analysis reveals Fe-modified hierarchical ZSM-5 lowers the apparent activation energy in catalytic pyrolysis of poplar sawdust.  相似文献   

8.
《能源学会志》2020,93(1):185-197
Sweet sorghum bagasse was pyrolyzed in the presence of two catalysts, ZSM-5 (a widely known commercial zeolite) and HY-340 (a relatively unexplored acid catalyst). The vapors originating from the thermal decomposition were examined by Py-GC/MS in the biomass/catalyst mass ratios of (1:1), (1:2), (1:5) and (1:10) at 450 °C, 550 °C and 650 °C. In the tests without catalysts, the production of both olefins and aromatics increased in response to increasing reaction temperature. In the catalytic pyrolysis in the presence of ZSM-5, the formation of aromatics increased significantly and the formation of oxygenated decreased in response to increasing amounts of catalyst at all the temperatures studied. The highest concentration of aromatics was obtained in the tests at 450 °C with a bagasse/ZSM-5 ratio of (1:10). In the tests with niobic acid, the formation of furans increased with the addition of HY-340 at ratios of (1:1) and (1:2), and the formation of oxygenated decreased in response to the increase in biomass/catalyst ratio at all temperatures mentioned. Area percentages of approximately 54% of olefins were obtained in the assays at bagasse/HY-340 ratios of (1:2) and (1:5) at 650 °C.  相似文献   

9.
《能源学会志》2020,93(2):581-590
Hydrothermal liquefaction (HTL) of Ulva prolifera macroalgae (UP) was carried out in the presence of three zeolites based catalysts (ZSM-5, Y-Zeolite and Mordenite) with the different weight percentage (10–20 wt%) at 260–300 °C for 15–45 min. A comparison between non-catalytic and catalytic behavior of ZSM-5, Y-Zeolite, and Mordenite in the conversion of Ulva prolifera showed that is affected by properties of zeolites. Maximum bio-oil yield for non-catalytic liquefaction was 16.6 wt% at 280 °C for 15 min. The bio-oil yield increased to 29.3 wt% with ZSM-5 catalyst (15.0 wt%) at 280 °C. The chemical components and functional groups present in the bio-oils are identified by GC-MS, FT-IR, 1H-NMR, and elemental analysis techniques. Higher heating value (HHV) of bio-oil (32.2–34.8 MJ/kg) obtained when catalyst was used compared to the non-catalytic reaction (21.2 MJ/kg). The higher de-oxygenation occurred in the case of ZSM-5 catalytic liquefaction reaction compared to the other catalyst such as Y-zeolite and mordenite. The maximum percentage of the aromatic proton was observed in bio-oil of ZSM-5 (29.7%) catalyzed reaction and minimum (1.4%) was observed in the non-catalyst reaction bio-oil. The use of zeolites catalyst during the liquefaction, the oxygen content in the bio-oil reduced to 17.7%. Aqueous phase analysis exposed that presence of valuables nutrients.  相似文献   

10.
《能源学会志》2020,93(2):811-821
Bio-oil is a multicomponent mixture of more than 400 types of organic compounds, with high water content. Fractionation of bio-oil may be a more efficient approach for primary separation of bio-oil. In this work, to better understand the effect of fractional condensers on bio-oil yield, physicochemical characteristics, compounds distribution and phenols selection during biomass fast pyrolysis process, a semi-automatic controlled fluidized bed reactor biomass fast pyrolysis system with four-stage condensers was developed. Average temperatures of Condensers 1, 2, 3, 4 were 32.39 °C, 26.74 °C, 24.06 °C and 23.68 °C, respectively. And the bio-oil yields of Condenser 1, 2, 3, and 4 were 26.82%, 7.31%, 1.48% and 9.69%, respectively. Bio-oil collected from Condenser 4 had the lowest water content (9.68 wt%), the lowest acidity (pH = 3.67), and the highest HHV (29.2 MJ/kg). The highest relative contents of compounds collected from Condenser 1, 2, 3 and 4 were 1-(4-hydroxy-3-methoxyphenyl)-2-Propanone (6.95%), trans-Isoeugenol (6.63%), Creosol (5.28%), and trans-Isoeugenol (6.69%), respectively. Fractional condensers affected the compounds distribution, but it has a stronger effect on relative heavy compounds (molar mass > 250) and a weaker effect on relative light compounds (molar mass < 200). Fractional condensers were more conducive to the selection of phenols with relative yield of more than 30%. Phenols, acids and furfurans tended to distribute at higher temperature, while alcohols, ethers and hydrocarbons tended to distribute at relative lower temperature, but the difference was small. The research has provided a reference for the production of bio-oil.  相似文献   

11.
《能源学会志》2020,93(6):2435-2443
Co-pyrolysis of poplar wood sawdust and high-density polyethylene at a mass ratio of 1:1 over acid-modified ZSM-5 was studied by Py-GC/MS at catalyst to feedstock mass ratio of 1:1 to enhance hydrocarbon formation in the pyrolytic vapour. Catalysts were modified by wet impregnation using sulfuric acid (0.1 M, 0.3 M, 0.5 M and 0.7 M). Results showed that acid treatment affects the catalytic activity of ZSM-5 by changing the amount of acid sites. Co-pyrolysis with HDPE resulted in high relative content of olefin(53.32%) than pyrolysis of poplar (16.6%) and significantly reduces the amount of oxygenates except alcohol. In catalytic co-pyrolysis over acid-modified ZSM-5, the share of olefin was between 56.20% and 59.7%, whereas the lowest amount was 49.53% over P-ZSM-5. The relative content of alkane over acid-modified ZSM-5 was in the range of 23.29–25.96% and higher than that with P-ZSM-5 (21.18%). Importantly, ZSM-5 (0.5 M) was most selective one for aromatic hydrocarbon (12.72%), leading to the maximum share of hydrocarbon of 93.18% when the lowest value was 76.84% over P-ZSM-5. Furthermore, ZSM-5 (0.5 M) showed better deoxygenation among catalysts used in this study. This research could be suggested as a reference for the research of co-pyrolysis of biomass and plastic.  相似文献   

12.
Microwave based technology is an alternative heating method and has already been successfully used in biomass pyrolysis for biochar and biofuel production thanks to its fast, volumetric, selective and efficient heating. Previous review mainly focused on production and analysis of bio-oil and gas instead of biochar. The current paper provides a review of microwave-assisted pyrolysis (MWP) of biomass and its biochar characteristics, including product distribution and biochar yield, biochar properties, microwave absorbers (MWAs) and catalysts commonly used in MWP, as well as comparison of biochar derived from MWP and conventional pyrolysis (CP). MWAs not only absorb microwave energy, they also act as catalysts to interact with gas, vapor and solids in the reactor, adjusting the product distribution and quality of products. It was reported for MWP that the highest biochar yield was >60 wt% and the maximum BET surface area was about 450–800 m2/g. Technology status and economics of MWP of biomass in China were briefly introduced. The Optimization of yield and quality of biochar strongly depends on feedstock properties, reactor types, operating parameters, MWAs and catalysts added to the system.  相似文献   

13.
In this study, four kinds of straws with different biochemical compositions, including soybean straw (SS), peanut straw (PS), rice straw (RS), and corn straw (CS), were subjected to catalytic hydropyrolysis (HyPy) to explore the influence of biochemical composition on the products distribution and properties of the pyrolysis oil. The HyPy reactions were performed at 400 °C for 2 h with added 10 wt% Pd/C and 4 MPa H2. During the HyPy, hydrogen and catalyst broke the coating structure and hydrogen bond between cellulose (CL) and hemicellulose (HCL), and thus significantly weakened the biochemical composition effect on the yield and elemental composition of the bio-oil. The bio-oil yield varied between 11.75 wt% and 13.05 wt%, and the C, H, N, O, and S content fell into the following ranges of 82.06–85.15 wt%, 9.24–9.61 wt%, 1.18–1.43 wt%, 4.62–7.86 wt%, 45–130 ppm, respectively. Biochemical composition of straw, especially the mass ratio of CL to HCL (mCL/mHCL), markedly influenced the molecular composition of the bio-oil. Hydrocarbons (20.15–46.66%) and phenolic compounds (17.01–47.98%) accounted for the vast majority of the identified compounds. SS and PS with higher mCL/mHCL (1.92 and 1.80, respectively) tended to produce bio-oils with more aromatics (22.63% and 20.70%, respectively) and fewer phenolic compounds (17.01% and 22.56%, respectively).  相似文献   

14.
《能源学会志》2020,93(5):1892-1900
Pyrolysis studies on agricultural (rice straw), forest (pine) and aquatic (Ulva lactuca) biomass were carried out in a fixed bed reactor at different temperature range of 300–550 °C. The product distributions and their characterization of products were compared among these biomasses. The maximum liquid product yield 29.4, 57.5 and 25.6 wt% obtained at 400, 500 and 400 °C respectively from rice straw (RS), pine (PN) and Ulva lactuca (UL) biomass. However, the higher conversion was observed in the case of pine wood biomass 77.0% at 550 °C. From the GC-MS analysis, it is observed that RS and PN bio-oil mostly composed of derivatives of phenolic compounds, while UL bio-oil composed of cyclopentenone derivatives compounds. The highest higher heating value (HHV) was found in pine bio-oil 34.8 MJ/kg. Also PN pyrolytic bio-oil had higher boiling point differences compounds. The bio-char analysis showed that the PN bio-char is a carbon rich and porous in nature as compared to the RS and UL bio-char.  相似文献   

15.
Using Ni/SiC as a catalyst, bagasse was microwave-assisted pyrolysis in a homemade quartz reactor. The results showed that with the continuous increase of Ni content, the experimental catalytic pyrolysis effect on bio-oil became more and more obvious, and the hydrogen yield gradually increased. When Ni content exceeded 8%, the hydrogen yield and bio-oil catalytic pyrolysis efficiency decreased, and the lowest bio-oil yield was 9.55% when Ni content was 15%, With the increase of power, the catalytic cracking efficiency and hydrogen yield of bio-oil increased, With the increase of catalyst dosage, the catalytic efficiency and the hydrogen yield increase gradually. When the catalyst quality exceeds 1/4 of the material, the growth rate of catalytic efficiency decreases, after alkali treatment, the variation law of hydrogen yield and bio-oil is consistent with that without alkali treatment. In contrast, more hydrogen can be produced after alkali treatment. Under the optimum conditions, the hydrogen yield was 35.85 g/kg biomass.  相似文献   

16.
《能源学会志》2020,93(5):1833-1847
The high concentration of oxygenated compounds in pyrolytic products prohibits the conversion of hemicellulose to important biofuels and chemicals via fast pyrolysis. Herein CaO and HZSM-5 was developed to convert xylan and LDPE to valuable hydrocarbons by thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and elucidate the reaction mechanism were also investigated in detail. The results indicated that xylan/LDPE copyrolysis was more complicated than pyrolysis of the individual components. LDPE hindered the thermal decomposition and aromatic hydrocarbon formation from xylan at temperatures under 350 °C and had a synergistic effect at high temperatures. 50% LDPE was proven to be more beneficial than other percentages for the formation of monocyclic aromatic hydrocarbons. Simultaneously, the addition of CaO/HZSM-5 significantly reduced the reaction Ea and increased the reaction rate. CaO can effectively improve the deoxygenation and aromatization reaction, enhancing the yield and selectivity of aromatics to a certain extent. The maximum yield of hydrocarbons (96.01%), mono-aromatic hydrocarbons (88.53%) and SBTXE (85.79%) were obtained at a CaO/HZSM-5 ratio of 1:2, a pyrolysis temperature of 450 °C, a catalytic temperature of 550 °C, a catalyst dose of 1:2 and a xylan-to-LDPE ratio of 1:1 via an ex situ process. The system was dominated by toluene, xylene and alkyl benzene. Diels-Alder reactions of furans and hydrocarbon pool mechanism of nonfuranic compounds improved aromatic formation. This study provides a fundamental for recovering energy and chemicals from pyrolysis of hemicellulose.  相似文献   

17.
Catalytic pyrolysis is an effective method for converting biomass to value-added chemicals. However, the development of cost-effective catalysts remains a major challenge. In this study, a highly efficient bimetallic Pt–Ni catalyst (Pt to Ni ratio = 0:1, 2:1, 1:1, 1:2, 1:0) was fabricated and used for catalytic biomass pyrolysis upgrading into hydrocarbon-rich bio-oil with pyrolysis-gaschromatography × gaschromatography/mass spectrometry (Py-GC1 GC/MS). The product yield and selectivity of upgraded bio-oil, thermal properties, kinetic and deactivation mechanisms were also determined to investigate the reaction mechanism. It was determined that Pt addition strengthened the NiO and alumina interaction and improved nickel dispersion, promoting CO hydrogenation. Bimetallic catalysts had a higher stability and activity owing to synergistic action of platinum and nickel on γ-Al2O3, and the surface oxygen vacancies were derived from the electron transfer of Pt to Ni and the higher number of super acid-base sites, which inhibited coke deposition. In addition, the higher valence Pt (Pt2+) in the catalyst was favorable for decarboxylation and hydrodecarbonylation reactions. Various metal ratios were employed, and the Pt–Ni/Al = 1:2 catalyst exhibited an excellent catalytic performance, achieving highest peak areas of desired hydrocarbons and aromatic hydrocarbons at 52.67% and 40.25%, respectively, and the lowest peak area of deposited coke at 7.26%, along with a 13.98% weightloss rate.  相似文献   

18.
The aim of this study is to evaluate olive pomace (OP) as a fuel potential and to examine the effect of Ni–Co/Al2O3 catalyst on the pyrolysis of OP by experimental and thermogravimetric analysis (TGA). Pyrolysis studies and kinetic studies were performed in a fixed-bed reactor and a TG analyzer, respectively. The kinetic study was compared with the Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) methods and their thermodynamic properties were determined. The average activation energy of the OP and OP-20% catalyst was found to be 142.59 and 132.83 kJ/mol, respectively. In addition, the H2 yield increased from 1.76 mol H2/kg biomass to 6.08 mol H2/kg biomass in the presence of 20 wt% catalyst. Based on the results obtained, the pyrolysis of OP can be considered as a suitable alternative for biofuel production.  相似文献   

19.
Agriculture residues such as palmyra fruit bunch are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Flash pyrolysis experiments have been conducted in the electrically heated fluidized bed reactor to determine the effect of pyrolysis temperature, particle size, and sweep gas flow rate on the pyrolysis product yield. In this study the maximum oil yield of 48.2% was achieved at a temperature of 500°C, particle size of 1 mm, and at a sweep gas flow rate of 2 m3/h. The results show that the effects of pyrolysis temperature and particle size on pyrolysis yields are more significant than that of sweep gas flow rate. Bio-oil was identified as a biofuel candidate and it was further upgraded for better-quality biofuel. Various physical and elemental analyses were performed for bio-oil and the same characteristics study was also carried out for biofuel.  相似文献   

20.
Agriculture residues such as palm shell are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Palm shells were pyrolyzed in a fluidized-bed reactor at 400, 500, 600, 700 and 800 °C with N2 as carrier gas at flow rate 1, 2, 3, 4 and 5 L/min. The objective of the present work is to determine the effects of temperature, flow rate of N2, particle size and reaction time on the optimization of production of renewable bio-oil from palm shell. According to this study the maximum yield of bio-oil (47.3 wt%) can be obtained, working at the medium level for the operation temperature (500 °C) and 2 L/min of N2 flow rate at 60 min reaction time. Temperature is the most important factor, having a significant positive effect on yield product of bio-oil. The oil was characterized by Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号