首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engine [Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev 2000;4:111–33. [1]; Vellguth G. Performance of vegetable oils and their monoesters as fuels for diesel engines. SAE 831358, 1983. [2]; Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Int J Prog Energy Combust Sci 2005;31:466–87. [3]; Jajoo BN, Keoti RS. Evaluation of vegetable oils as supplementary fuels for diesel engines. In: Proceedings of the XV national conference on IC engines and combustion, Anna University Chennai, 1997. [4]; Altin R, Cetinkaya S, Yucesu HS. The potential of using vegetable oil fuels as fuel for diesel engines. Int J Energy Convers Manage 2000;42:529–38, 248. [5]; Gajendra Babu MK, Chandan Kumar Das LM. Experimental investigations on a Karanja oil methyl ester fuelled DI diesel engine. SAE 2006-01-0238, 2006. [6]; Agarwal D, Kumar Agarwal A. Performance and emission characteristics of a Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Int J Appl Therm Eng 2007;27:2314–23. [7]]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engine has limited applications due to higher domestic requirement [Scholl Kyle W, Sorenson Spencer C. Combustion Analysis of soyabean oil methyl ester in a direct injection diesel engine. SAE 930934, 1993. [8]; Nwafor OMI. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines. Int J Renew Energy 2000;21:433–44. [9]; Nwafor OMI. The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions. Renew Energy 2003;28:171–81. [10]]. In view of this, Honge oil (Pongamia Pinnata Linn) being non-edible oil could be regarded as an alternative fuel for CI engine applications. The viscosity of Honge oil is reduced by transesterification process to obtain Honge oil methyl ester (HOME).Gasification is a process in which solid biomass is converted into a mixture of combustible gases, which complete their combustion in an IC engine. Hence, producer gas can act as a promising alternative fuel, especially for diesel engines by substituting considerable amount of diesel fuels. Downdraft moving bed gasifiers coupled with IC engine are a good choice for moderate quantities of available biomass, up to 500 kW of electric power. Hence, bioderived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Since vegetable oils produce higher smoke emissions, dual fuel operation could be adopted for improving their performance.  相似文献   

2.
This paper reviews the production and characterization of biodiesel (BD or B) as well as the experimental work carried out by many researchers in this field. BD fuel is a renewable substitute fuel for petroleum diesel or petrodiesel (PD) fuel made from vegetable or animal fats. BD fuel can be used in any mixture with PD fuel as it has very similar characteristics but it has lower exhaust emissions. BD fuel has better properties than that of PD fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. There are more than 350 oil bearing crops identified, among which only sunflower, safflower, soybean, cottonseed, rapeseed and peanut oils are considered as potential alternative fuels for diesel engines. The major problem associated with the use of pure vegetable oils as fuels, for Diesel engines are caused by high fuel viscosity in compression ignition. Dilution, micro-emulsification, pyrolysis and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, some engine performance problems still exist. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2/s whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2/s. The viscosity values of vegetable oil methyl esters highly decreases after transesterification process. Compared to no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. An increase in density from 860 to 885 kg/m3 for vegetable oil methyl esters or biodiesels increases the viscosity from 3.59 to 4.63 mm2/s and the increases are highly regular. The purpose of the transesterification process is to lower the viscosity of the oil. The transesterfication of triglycerides by methanol, ethanol, propanol and butanol, has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification.  相似文献   

3.
《Applied Thermal Engineering》2007,27(13):2314-2323
The scarce and rapidly depleting conventional petroleum resources have promoted research for alternative fuels for internal combustion engines. Among various possible options, fuels derived from triglycerides (vegetable oils/animal fats) present promising “greener” substitutes for fossil fuels. Vegetable oils, due to their agricultural origin, are able to reduce net CO2 emissions to the atmosphere along with import substitution of petroleum products. However, several operational and durability problems of using straight vegetable oils in diesel engines reported in the literature, which are because of their higher viscosity and low volatility compared to mineral diesel fuel.In the present research, experiments were designed to study the effect of reducing Jatropha oil’s viscosity by increasing the fuel temperature (using waste heat of the exhaust gases) and thereby eliminating its effect on combustion and emission characteristics of the engine. Experiments were also conducted using various blends of Jatropha oil with mineral diesel to study the effect of reduced blend viscosity on emissions and performance of diesel engine. A single cylinder, four stroke, constant speed, water cooled, direct injection diesel engine typically used in agricultural sector was used for the experiments. The acquired data were analyzed for various parameters such as thermal efficiency, brake specific fuel consumption (BSFC), smoke opacity, CO2, CO and HC emissions. While operating the engine on Jatropha oil (preheated and blends), performance and emission parameters were found to be very close to mineral diesel for lower blend concentrations. However, for higher blend concentrations, performance and emissions were observed to be marginally inferior.  相似文献   

4.
Owing to unstable diesel fuel prices in the world market, many farmers have been looking for alternative fuels. Vegetable oils are one of the alternatives, which can be used as fuel in diesel engines either in the form of straight vegetable oil or in the form of biodiesel. This study aims to present experimental data by utilization of home and industrial biodiesel as fuel in an agricultural tractor diesel engine. The home biodiesel production was made from different vegetable oils (crude rapeseed, edible sunflower and waste oil) with the process of one‐stage‐based catalyzed transesterification. A commercially available agricultural tractor ZETOR 7745 was employed. Measurements were taken on the power take‐off shaft by electrical dynamometer FROMENT XT200. According to the results, agricultural tractor diesel engine operating on home biodiesel fuels had better performance characteristics related to industrially produced biodiesel and similar to conventional diesel fuel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

The purpose of this work is to investigate biodiesel production processes from vegetable oils. Biodiesel fuel can be made from new or used vegetable oils and animal fats, which are non-toxic, biodegradable, renewable resources. The vegetable oil fuels were not acceptable because they were more expensive than petroleum fuels. Biodiesel has become more attractive recently because of its environmental benefits. With recent increases in petroleum prices and uncertainties concerning petroleum availability, there is renewed interest in vegetable oil fuels for diesel engines. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, and some engine performance problems still exist. The purpose of the transesterification process is to lower the viscosity of the oil. Pyrolysis produces more biogasoline than biodiesel fuel.  相似文献   

6.
The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NOX, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NOX) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation.  相似文献   

7.
《Biomass & bioenergy》2005,28(1):77-86
Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines.In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends.  相似文献   

8.

Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl 2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K.  相似文献   

9.
Vegetable oil is one of the main first generation liquid biofuels. The fuel characteristics of vegetable oil such as viscosity and atomization cannot be accommodated by existing diesel engines. An alternate process has been developed to improve the fuel characteristics of vegetable oils through the process of alcoholysis to produce a fuel called biodiesel. It can be used in engines as substitute for fossil fuel. This paper reviews the characteristics of different oils available for biodiesel production and the production technologies, engine performance using vegetable oil and biodiesel, and emission studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Many studies are still being carried out to find out surplus information about how vegetable based oils can efficiently be used in compression ignition engines. Raw rapeseed oil (RRO) was used as blended with diesel fuel (DF) by 50% oil–50% diesel fuel in volume (O50) also as blended with diesel fuel by 20% oil–80% diesel fuel in volume (O20). The test fuels were used in a single cylinder, four stroke, naturally aspirated, direct injection compression ignition engine. The effects of fuel preheating to 100 °C on the engine performance and emission characteristics of a CI engine fueled with rapeseed oil diesel blends were clarified. Results showed that preheating of RRO was lowered RRO’s viscosity and provided smooth fuel flow Heating is necessary for smooth flow and to avoid fuel filter clogging. It can be achieved by heating RRO to 100 °C. It can also be concluded that preheating of the fuel have some positive effects on engine performance and emissions when operating with vegetable oil.  相似文献   

11.
非直喷式增压柴油机燃用生物柴油的性能与排放特性   总被引:36,自引:0,他引:36  
研究了非直喷式增压柴油机燃用柴油一生物柴油混合燃料的性能和排放特性。未对原机作任何调整和改动,研究了不同生物柴油掺混比例的混合燃料对功率、油耗、烟度和NOx排放的影响。结果表明:非直喷式柴油机燃用生物柴油后柴油机功率略有下降,油耗有所上升,烟度大幅下降,NOx排放增加明显。油耗、烟度和NOx的变化均与生物柴油掺混比例呈线性关系,合适的生物柴油掺混比例即可以保持柴油机的性能,又可有效地降低碳烟排放,且不引起NOx排放的显著变化。对于该增压柴油机,掺混生物柴油对外特性下的排放影响最大,影响最小的为标定转速下的负荷特性。不论是全负荷还是部分负荷,燃用生物柴油时低速下的烟度降低和NOx上升幅度均比高速时大,而同转速下高负荷时烟度降低和NOx上升更为明显。  相似文献   

12.
Recent concerns over the environment, increasing fuel prices and scarcity of its supply have promoted the interest in development of the alternative sources for petroleum fuels. At present, biodiesel is commercially produced from the refined edible vegetable oils such as sunflower oil, palm oil and soybean oil, etc. by alkaline-catalyzed esterification process. This process is not suitable for production of biodiesel from many unrefined non-edible vegetable oils because of their high acid value. Hence, a two-step esterification method is developed to produce biodiesel from high FFA vegetable oils. The biodiesel production method consists of acid-catalyzed pretreatment followed by an alkaline-catalyzed transesterification. The important properties of methyl esters of rubber seed oil are compared with other esters and diesel. Pure rubber seed oil, diesel and biodiesel are used as fuels in the compression ignition engine and the performance and emission characteristics of the engine are analyzed. The lower blends of biodiesel increase the brake thermal efficiency and reduce the fuel consumption. The exhaust gas emissions are reduced with increase in biodiesel concentration. The experimental results proved that the use of biodiesel (produced from unrefined rubber seed oil) in compression ignition engines is a viable alternative to diesel.  相似文献   

13.
Renewable fuels produced from vegetable oils are an attractive alternative to fossil-based fuel. Different type of fuels can be derived from these triglycerides. One of them is biodiesel which is a mono alkyl ester of the vegetable oil. The biodiesel is produced by transesterification of the oil with an alcohol in the presence of a catalyst. Another kind of fuel (which is similar to petroleum-derived diesel) can be produced from the vegetable oil using hydroprocessing technique. This method uses elevated temperature and pressure along with a catalyst to produce a fuel termed as ‘renewable diesel’. The fuel produced has properties that are beneficial for the engine as well as the environment. It has high cetane number, low density, excellent cold flow properties and same materials can be used as are used for engine running on petrodiesel. It can effectively reduce NOx, PM, HC, CO emissions and unregulated emissions as well as greenhouse gases as compared to diesel. The fuel is also beneficial for the after-treatment systems. Trials in the field have shown that the volumetric fuel consumption of renewable diesel is higher than petrodiesel and nearly proportional to the volumetric heating value. The present review focuses on the hydroprocessing technique used for the renewable diesel production and the effect of different parameters such as catalyst, reaction temperature, hydrogen pressure, liquid hourly space velocity (LHSV) and H2/oil ratio on oil conversion, diesel selectivity, and isomerization. The review also summarizes the effect; renewable diesel has on combustion, performance, and emission characteristics of a compression ignition engine.  相似文献   

14.
The present review aims to study the prospects and opportunities of introducing vegetable oils and their derivatives as fuel in diesel engines. In our country the ratio of diesel to gasoline fuel is 7:1, depicting a highly skewed situation. Thus, it is necessary to replace fossil diesel fuel by alternative fuels. Vegetable oils present a very promising scenario of functioning as alternative fuels to fossil diesel fuel. The properties of these oils can be compared favorably with the characteristics required for internal combustion engine fuels. Fuel-related properties are reviewed and compared with those of conventional diesel fuel. Peak pressure development, heat release rate analysis, and vibration analysis of the engine are discussed in relation with the use of bio-diesel and conventional diesel fuel. Optimization of alkali-catalyzed transesterification of Pungamia pinnata oil for the production of bio-diesel is discussed. Use of bio-diesel in a conventional diesel engine results in substantial reduction in unburned hydrocarbon (UBHC), carbon monoxide (CO), particulate matters (PM) emission and oxide of nitrogen. The suitability of injection timing for diesel engine operation with vegetable oils and its blends, environmental considerations are discussed. Teardown analysis of bio-diesel B20-operated vehicle are also discussed.  相似文献   

15.
植物油及其衍生物在柴油机上的应用   总被引:4,自引:0,他引:4  
评述了植物油及其衍生物在柴油机上应用的前景和可行性,讨论了目前纯植物油、生物柴油和它们的混合物在柴油机上使用的最新研究成果。比较了植物油及其衍生物和传统柴油的性质以及柴油机燃用这些燃料时的性能和排放特性。  相似文献   

16.
Palm oil (PO) was treated using different methods in order to use and test it as fuel in Compression Ignition (CI) engines. The treatments include PO preheated and preparation of PO/diesel oil blends, using mixtures of PO with waste cooking oil (WCO), which are converted into esters by a transesterification process. The purpose of this study is to evaluate the potential of the palm oil-based biofuels to replace diesel oil in CI engines.Tests were conducted in a single cylinder, four-stroke, air-cooled, direct injection diesel engine (no engine modifications were required). Experiments were initially carried out with diesel oil for providing baseline data. All the tested fuels have a low heating value compared to diesel fuel. A high fraction of PO in diesel fuel decreases the heating value of the blend. The brake thermal efficiency increases for the PO/Diesel blends. HC emissions for all those fuels except for the PO/Diesel blends are found lower, while CO emissions rise for all types of fuels. NOx emissions are higher at low load, but lower at full load, for the engine fueled with PO and lower both at middle and full load for the engine fueled with the esters.  相似文献   

17.
《Biomass & bioenergy》2005,28(1):87-93
There is an increasing interest in many countries to search for suitable alternative fuels that are environment friendly. Although straight vegetable oils can be used in diesel engines, their high viscosities, low volatilities and poor cold flow properties have led to the investigation of various derivatives. Biodiesel is a fatty acid alkyl ester, which can be derived from any vegetable oil by transesterification. Biodiesel is a renewable, biodegradable and non-toxic fuel. In this study, Mahua oil (Madhuca indica seed oil) was transesterified with methanol using sodium hydroxide as catalyst to obtain mahua oil methyl ester. This biodiesel was tested in a single cylinder, four stroke, direct injection, constant speed, compression ignition diesel engine (Kirloskar) to evaluate the performance and emissions.  相似文献   

18.
柴油机直接燃用植物油燃料,存在启动困难、在怠速、低转速和小负荷等工况时燃烧排放性能差等问题。本文对原车柴油机燃料供给系统进行改进设计,应用控制单元对燃油供给系统进行控制,在启动、怠速、低转速和小负荷时给发动机供柴油,中高负荷时给发动机供植物油,实现柴油和植物油燃料的双供给。改装后整车道路试验表明,燃用植物油汽车运行可靠,动力性、经济性与原车相当,在中高负荷时燃烧和排放特性优于柴油车。  相似文献   

19.
Progress in biodiesel processing   总被引:3,自引:0,他引:3  
Biodiesel is a notable alternative to the widely used petroleum-derived diesel fuel since it can be generated by domestic natural sources such as soybeans, rapeseeds, coconuts, and even recycled cooking oil, and thus reduces dependence on diminishing petroleum fuel from foreign sources. The injection and atomization characteristics of the vegetable oils are significantly different than those of petroleum-derived diesel fuels, mainly as the result of their high viscosities. Modern diesel engines have fuel-injection system that is sensitive to viscosity change. One way to avoid these problems is to reduce fuel viscosity of vegetable oil in order to improve its performance. The conversion of vegetable oils into biodiesel is an effective way to overcome all the problems associated with the vegetable oils. Dilution, micro-emulsification, pyrolysis, and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Transesterification is the most common method and leads to monoalkyl esters of vegetable oils and fats, now called biodiesel when used for fuel purposes. The methyl ester produced by transesterification of vegetable oil has a high cetane number, low viscosity and improved heating value compared to those of pure vegetable oil which results in shorter ignition delay and longer combustion duration and hence low particulate emissions.  相似文献   

20.
《Biomass & bioenergy》2003,24(2):141-149
Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high-energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. With the exception of rape seed oil which is the principal raw material for biodiesel fatty acid methyl esters, sunflower oil, corn oil and olive oil, which are abundant in Southern Europe, along with some wastes, such as used frying oils, appear to be attractive candidates for biodiesel production. In this paper, fuel consumption and exhaust emissions measurements from a single cylinder, stationary diesel engine are described. The engine was fueled with pure marine diesel fuel and blends containing two types of biodiesel, at proportions up to 50%. The two types of biodiesel appeared to have equal performance, and irrespective of the raw material used for their production, their addition to the marine diesel fuel improved the particulate matter, unburned hydrocarbons, nitrogen oxide and carbon monoxide emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号