共查询到8条相似文献,搜索用时 15 毫秒
1.
Diffusion of seawater in unsaturated polyester resin (UPR) and its glass fiber reinforced composite in the presence of titanium dioxide has been studied by sorption method. Incorporation of glass and TiO2 to UPR alters the seawater diffusion process from Fickian to non‐Fickian type. The dual mode sorption model is used to separate Fickian‐controlled and relaxation‐controlled diffusion in case of UPR‐T, UPR‐G, and UPR‐GT. The presence of TiO2 seems to stabilize UPR and its glass reinforced samples but an increase in the rate of seawater diffusion is observed for these systems. The free volume determined from positron lifetime measurements support the diffusion data in these systems. Results further indicate that the contribution to diffusion in the later stages of sorption is due to the increased contribution from the interfaces. The plasticizing effect of TiO2 is clearly seen even in the glass reinforced composite. DMA results show an increase in flexibility because of TiO2 presence both in the neat as well as glass reinforced resin which is well supported by decrease in Tg value from DSC data. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2784–2794, 2006 相似文献
2.
Cerium oxide and titanium dioxide were prepared by thermal decomposition of the precursor salts and thermal treatment of titanium plates. In aqueous medium, the metal oxides show a well-defined electrochemical reaction; a solid state redox process takes place in the cathodic range of potentials and only water discharge reaction occurs in the anodic region. At the experimental conditions, the prepared materials were not totally active for the electrooxidation of toluene. The theoretical modeling suggests that the lack of activity is due to the weak interaction between toluene and the metal oxide surface. 相似文献
3.
Solubility of the silver nitrate in the supercritical carbon dioxide containing ethanol and ethylene glycol as double cosolvents was measured under certain pressure and temperature range(10–25 MPa, 323.15–333.15 K). The impact of the pressure and temperature on the solubility was also investigated. Based on the experiment data,a correlation model concerning solid's solubility in supercritical fluids was established by combining the solubility parameter with the thermodynamic equation when a binary interaction parameter and a mixed solvent solubility parameter were defined. Experiments show the solubility of AgNO_3 increases with the pressure at a certain temperature. However, the influence of temperature is related to a pressure defined as the turnover pressure(12.3 MPa). When the pressure is higher(or lower) than this turnover pressure, silver nitrate's solubility shows increasing(or decreasing) trend as the temperature rises. Satisfactory accuracy of our presented model was revealed by comparing experimental data with calculated results. 相似文献
4.
Photoreduction/removal of cadmium was studied at pH 7 using TiO2 Degussa as photocatalyst, and either formate or methanol as hole scavengers. In the absence of organic additives, approximately 60% of cadmium was found to be removed from the solution by adsorption. Addition of formate resulted in the photoreduction of cadmium to its metallic form. No cadmium reduction was observed when methanol was added as the hole scavenger. Zeta potential measurements of the catalyst suspensions and studies on the extent of organic additive adsorption and mineralisation were used to prove the photoreduction process. It was found that the adsorption of both cadmium and the organic hole scavenger is crucial for the photoreduction of cadmium. It is postulated that to be an effective hole scavenger the organic additive needs to be easily photooxidised under an anoxic environment. In addition, the presence of formate radicals could be responsible for the Cd photoreduction. 相似文献
5.
Jean-Claude Auger Vincent Arnaud Martinez Brian Stout 《Journal of Coatings Technology and Research》2009,6(1):89-97
We propose an original theoretical framework to model the scattering efficiency of white paint films as a function of the volume fraction and spatial state of dispersion of rutile titanium dioxide pigments, taking into account electromagnetic couplings. Numerical calculations are performed using a multiple T matrix formalism on an “elemental” volume extracted from the bulk of the paint and which we model as pigments and fillers in a polymer matrix. Qualitative studies show that, due to the dependent scattering phenomenon, the size of fillers can modulate the magnitude of loss in scattering efficiency by modifying the spatial state of dispersion of the pigments in the polymer matrix. In particular, fillers whose size is comparable to the dimension of the pigments improve the scattering efficiency by impeding crowding. It is also shown that the optical properties of the bulk material at arbitrary concentration can be approximated by extrapolating the optical properties calculated on a limited number of scatterers. 相似文献
6.
A dye‐sensitized indium tin oxide (ITO)/titanium dioxide (TiO2)/polyacrylonitrile (PAN)–propylene carbonate (PC)–lithium perchlorate (LiClO4)/graphite solar cell was fabricated, and its performance was tested in the dark and under the illumination of a 100 mW/cm2 light. Three TiO2 samples were used in the device, namely, uncoated TiO2, a TiO2 film coated with methyl red dye, and a TiO2 film coated with coumarin dye. The films were deposited onto an ITO‐covered glass substrate by a controlled hydrolysis technique assisted with a spin‐coating technique. The films were characterized by scanning electron microscopy to determine their average grain size. The smallest grain size (48 nm) was obtained for the uncoated film. An electrolyte of PAN–LiClO4 with PC plasticizer was prepared by a solution‐casting technique. A graphite electrode was prepared on a glass slide by an electron‐beam evaporation technique. The device showed rectification properties in the dark and showed a photovoltaic effect under illumination. The device with the uncoated TiO2 film showed the highest short‐circuit current density (2.0 μA/cm2) and an open‐circuit voltage of 0.64 V because it possessed the smallest grain size. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
7.
Nickel(II) 1-dimethylamino-2-methyl-2-butoxide (Ni(dmamb)2) with water and hydrogen sulfide as oxygen and sulfur sources was employed in atomic layer deposition (ALD) of nickel oxide (NiO) and nickel sulfide (NiS) thin films. Both NiO and NiS thin films demonstrate temperature-independent growth rates per cycle of 0.128?nm/cycle and 0.0765?nm/cycle, at 130–150?°C and 80–160?°C, respectively. Comparison of two nickel-based thin film materials demonstrates dissimilar deposition features depending on the reactivity of the Ni precursor, i.e., Ni(dmamb)2 with anion sources provided by the water and hydrogen sulfide reactants. Difference in reactivity observed for NiO and NiS ALD processes is further investigated by density functional theory (DFT) simulations of surface reactions, which indicated that H2S demonstrate higher reactivity with surface-adsorbed Ni precursor than H2O. The material properties of ALD NiO and NiS thin films including stoichiometry, crystallinity, band structure, and electronic properties were analyzed by multiple experimental techniques, showing potential of ALD NiS as electrode or catalyst for energy-oriented devices. 相似文献
8.
The non-isothermal decomposition process of commercial silver nitrate used as the precursor for the USP procedure was investigated by simultaneous TGA–DTA measurements at different heating rates, in an argon atmosphere. Detailed kinetic and thermodynamic analyses, with special emphasis on the formation of a complete mechanistic scheme of the process were performed. It was found that the process under study can be described by the acceleratory power law kinetic model (P2), in the range of the extent of conversion (α) values (0.15 ≤ α ≤ 0.85), where the value of the apparent activation energy (Ea) can be considered as the constant (141.3 kJ mol−1). The kinetic prediction analysis was shown that only the power law kinetic model (f(α) = 2α1/2) gives the value of Ea which is consistent with the value obtained from the isothermal conditions. The critical temperature (Tc) of decomposition process was determined. The resulting value of Tc was in fairly good agreement with the starting temperature of thermal decomposition of silver oxide (Ag2O). The thermodynamic functions of decomposition process are calculated by the activated complex theory and showed that the silver–oxygen bond secession can be interpreted as a “slow” stage of the decomposition process. 相似文献