首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, methanation of CO2 over Ni/Al2O3 with varied nickel loading (from 0 to 50 wt%) was evaluated, striving to explore the effects of nickel loading on catalytic behaviors and the reaction intermediates formed. The results showed that agglomeration of nickel particles were closely related to interaction between nickel and alumina. Increasing nickel loading resulted in the increased proportion of nickel having medium strong interaction with alumina, the reduced reduction degree of NiO, the increase of medium to strong basic sites, the enhanced activity for methanation and the competition between reverse water gas shift (RWGS) reaction and methanation. Lower nickel loading promoted RWGS reaction while methanation of CO2 dominated at higher nickel loading. The catalyst with a nickel loading around 25% achieved the best activity for methanation. The in–situ DRIFTS studies of methanation of CO2 showed that CO2 could be absorbed on surface of metallic Ni, NiO or alumina. More metallic nickel species on alumina suppressed formation of carbonate species while promoted further conversion of HCOO1 species and 1CH3 species, achieving a higher catalytic efficiency. Moreover, more metallic nickel species was crucial for gasifying the carbonaceous intermediates, prevented aggregation of the intermediates to coke and achieving a higher catalytic stability.  相似文献   

2.
    
《能源学会志》2020,93(4):1581-1596
Additives affect the physiochemical properties of the catalyst as well as the evolution of the reaction intermediates produced during the reaction process such as the methanation of CO2. In this study, Co/Al2O3 catalysts modified with Na, K, Mg or Ca were prepared and the reaction intermediates formed during CO2 methanation were investigated. The results showed that Na, K or Mg species reacted with alumina, forming Al(OH)3 or MgAl2O4 spinel structure, leading to the re-structure of the catalysts and a remarkable decrease of the specific surface area. The increased alkalinity of the catalyst did not promote the catalytic activity for methanation but promoted CO formation. The addition of Na or K enhanced the affinity of the catalyst to the reaction intermediates of HCOO* and CO32−, slowing down their further reduction to CH4 and leading to the lower catalytic activity. The evolution of HCOO* and CO32− species strongly correlated with the catalytic activity, while the direct correlation between the capability for the absorbance of CO2* as well as the C–O functionality and the catalytic activity was not found. In addition, the addition of Na or K to Co/Al2O3 could also induce the formation of a significant amount of the coke species in the nanotube form.  相似文献   

3.
    
This study investigates the impacts of the alkaline earth metal (Mg, Ca, Sr, Ba) additives on properties and performances of nickel catalysts for CO2 methanation. The results show that addition of Mg, Sr, and Ba creates more pores while Ca addition leads to merge of small pores. The alkalinity of the catalyst increases with the addition of Mg, Ca, Sr or Ba, however, it does not necessarily enhance the catalytic activity. The degree of reduction of nickel species is another important factor affecting catalyst activity. Mg or Ca addition promotes the reverse water gas shift reaction to form more CO but not the methanation. In converse, with the addition of Sr or Ba, the activities for methanation increased drastically, especially in the low temperature region. In situ Diffuse Reflection Infrared Fourier Transform Spectroscopy (DRIFTS) studies show that *OH, *CO3, *CO2, CHx, HCOO*, *CO and H2CO* species are main reaction intermediates. Mg or Ca promotes the carbonate formation. Sr or Ba promotes *CO and H2CO* formation, which are the important reaction intermediates in the conversion of CO2 to CH4. In addition, the Electron Paramagnetic Resonance (EPR) characterization shows that the catalyst modified with Sr species generates the oxygen vacancies that prevent electrons from being paired, forming a Lewis basic position. The oxygen vacancies generated are crucial for enhancing the catalytic activities for methanation at the low reaction temperatures.  相似文献   

4.
A number of Ce–La–Fe/γ-Al2O3 catalysts were prepared by impregnation and microwave hydrothermal heating based on the ratio of Ce, La, and Fe in natural bastnäsite to examine the synergistic relationship between Ce, La, and Fe in natural bastnäsite and its effects on ammonia selective catalytic reduction (NH3-SCR). The results demonstrated that an increase in Fe species is beneficial to the denitration performance of catalysts with a Ce:La:Fe mole ratio of 1:0.6:0.12, thus providing high NO conversion (>95%) at 350 °C. X-ray diffraction, transmission electron microscopy, and Raman spectroscopy results confirmed the formation of a solid solution between Ce, La, and Fe in the catalysts. The BET isotherms and NH3-TPD demonstrated that the addition of Fe increased the surface area and strengthened the surface acidity of Lewis acid sites. XPS and in situ DRIFTS indicated that electron transfer occurred between Fe3+/Fe2+ and Ce4+/Ce3+ redox cycles in the catalyst, thereby improving the adsorption and activation ability of NO and NH3. NO species were adsorbed on the catalysts in the form of monodentate nitrate, and then monodentate nitrate was oxidized to bidentate nitrate. The SCR reaction route was the coexistence of Eley–Rideal and Langmuir–Hinshelwood mechanisms.  相似文献   

5.
    
In this paper, the effects of strong base (KOH) addition on the catalytic performances of Ni/Al2O3 catalysts in acetic acid steam reforming for hydrogen generation was investigated. The addition of KOH drastically changed the physiochemical property and catalytic performances of the nickel–based catalysts. KOH reacted with γ–Al2O3 during calcination, forming ɑ–Al2O3 with Al(OH)3 as a reaction intermediate, which led to reconstruction of the porous structure, merge of small pores, decreased specific area and sintering of nickel. Most importantly, the catalytic activity of nickel–based catalysts were significantly enhanced by the addition KOH, especially the ones with low nickel loading. There are almost no active of 1 wt% Ni/Al2O3 catalyst for steam reforming of acetic acid, while, with adding 5 wt % KOH, activity of the catalyst matched that of 20 wt% Ni/Al2O3. In–situ DRIFTS study showed the involvement of the reactive intermediates including CH3, CH2, CO, COO, COC, CC and absorbed CO2 in acetic acid steam reforming. The Ni/Al2O3 catalyst with low nickel loading had insufficient metallic nickel to gasify these reactive intermediates. The presence KOH effectively aided gasification of the reactive intermediates, and thus significantly promoted the catalytic activity. In addition, the KOH with varied loading significantly affect formation of catalytic coke and polymeric coke formed during the reforming reaction.  相似文献   

6.
    
Two NiO based oxygen carrier materials (OCMs) were synthesized and tested for use as potential materials in chemical looping reforming applications. Redox properties of these materials were evaluated in successive methane reduction – air oxidation (redox) cycles in a thermogravimetric analyzer unit (TGA) and an in situ magnetometer. Zirconia supported (Ni–Zr) OCM exhibited excellent redox activity (high degree of reduction and oxidation) and stability during ten CH4 reduction-air oxidation cycles. The degree of reduction of the alumina supported (Ni–Al) OCM increased gradually during cycling experiments, due to the formation of easily reducible NiO from nickel aluminate species with successive reduction/re-oxidation. The Ni–Al OCM exhibited excellent stability with respect to oxidation resulting in nearly complete oxidation of reduced Ni in all cycles. Results from measurements in the magnetometer were in good agreement with those in the TGA for the Ni–Zr OCM (both with regards to the degree of reduction and oxidation) and the degree of oxidation of the Ni–Al OCM. A moderate crystallite growth with cycling was observed for Ni–Al, whereas a decrease in nickel crystallite size was observed for Ni–Zr.  相似文献   

7.
    
This study focused on the potential coordination between nickel or cobalt and alumina in Ni/Al2O3 and Co/Al2O3 catalysts and the impacts on their catalytic performances in methanation of CO2. The results exhibited that Co/Al2O3 catalyst was far more active than Ni/Al2O3 catalyst, due to the varied reaction intermediates formed in methanation. The DRIFTS results of methanation of CO2 exhibited that, over bare alumina, bicarbonate, formate and carbonate were the main intermediate species, which could be formed at even 80 °C. Over unsupported Ni catalyst, the formaldehyde species (H2CO*) and CO* species were dominated. Over the Ni/Al2O3 catalyst, however, the reaction intermediates formed were determined by alumina and accumulated on surface of the catalysts. The coordination effects between nickel and alumina in Ni/Al2O3 were thus not remarkable in terms of enhancing catalytic activity when compared to that in Co/Al2O3 catalyst. Over unsupported Co catalyst and the bare alumina, the reaction intermediates formed were roughly similar. Nevertheless, the combination of Co and alumina in Co/Al2O3 catalyst could effectively facilitate the conversion of bicarbonate, formate and carbonate species. CO2 could be activated over metallic cobalt sites, which could migrate and integrate with the hydroxyl group in alumina to form bicarbonate and further to formate and CO* species, and be further hydrogenated over cobalt sites to CH4. Such a coordination between alumina and cobalt species promoted the catalytic performances.  相似文献   

8.
    
Both metal sites and alkaline sites are essential parameters for a catalyst used in methanation of CO2. This study investigated the impacts of the relative abundance of metal sites and alkaline sites on the catalytic performances of nickel-based catalyst with attapulgite, a natural mineral, as the support. The results showed that the increase of nickel loading to attapulgite significantly decreased the abundance of alkaline sites, remarkably enhanced the catalytic activity, and suppressed the formation of CO. The in situ DRIFTS characterization of the CO2 methanation indicated that the alkaline sites favored formation of the oxygen-containing reaction intermediates such as CO1, –OH, 1CO2, formate, carbonate and bicarbonate species. In comparison, metallic nickel species promoted their further hydrogenation to form CH4. Besides the absorption/activation of 1CO2 was more preferable on surface of metallic nickel, but not on the alkaline sites. The availability of the alkaline sites was not as important as the metallic nickel species for preparation of an efficient catalyst for CO2 methanation.  相似文献   

9.
This work utilizes the microsensors that are fabricated on metallic bipolar plates to measure temperature and humidity in an operating micro-proton exchange membrane fuel cell (PEMFC). Bipolar plates were constructed of stainless steel (SS-304), and the flow channel was formed on a stainless steel substrate by wet etching. The micro-temperature and humidity sensors were fabricated using micro-electro-mechanical-systems (MEMS) technology. The sensors were located on the flow channel rib.  相似文献   

10.
The feasibility of using energy dispersive X-ray diffraction to characterize full size battery cells is demonstrated by unprecedented in situ measurements of the electrochemical processes taking place inside high temperature sodium metal halide (Na/MCl2, M = Ni and/or Fe) cells during charge/discharge cycling. Diffraction data provide phase information either via line scans across the 5 cm wide cells or via fixed location scans as a function of time. The data confirm the propagation of a well-defined chemical reaction front, as a function of charge/discharge time, beginning at the ceramic separator and proceeding inward. Measurement of the temporal evolution of the phase abundances yields mechanistic understanding and reaction rates as a function of charge/discharge state. In the case where M includes Fe, the data also clearly show the appearance of an intermediate phase, Na6FeCl8, during charging, thereby underscoring the power of this technique to reveal subtle mechanistic information. A number of additional detailed electrochemical kinetic effects are also discussed. This study shows that in situ high energy X-ray diffraction characterization of advanced battery cells in space and time is eminently feasible on a routine basis, and has great potential to advance the understanding of “buried” chemical processes.  相似文献   

11.
    
Ni/Al2O3 catalyst is the one of promising catalysts for enhancing H2 production from supercritical water gasification (SCWG) of biomass. However, due to carbon deposition, the deactivation of Ni/Al2O3 catalyst is still a serious issue. In this work, the effects of lanthanum (La) as promoter on the properties and catalytic performance of Ni/Al2O3 in SCWG of food waste were investigated. La promoted Ni/Al2O3 catalysts with different La loading content (3–15 wt%) were prepared via impregnation method. The catalysts were characterized using XRD, SEM, BET techniques. The SCWG experiments were carried out in a Hastelloy batch reactor in the operating temperature range of 420–480 °C, and evaluated based on H2 production. The stability of the catalysts was assessed by the amount of carbon deposition on catalyst surface and their catalytic activity after reuse cycles. The results showed that 9 wt% La promoter is the optimal loading as Ni/9La–Al2O3 catalyst performed best performance with the highest H2 yield of 8.03 mol/kg, and H2 mole fraction of 42.46% at 480 °C. La promoted Ni/Al2O3 catalysts have better anti-carbon deposition properties than bare Ni/Al2O3 catalyst, resulting in better gasification efficiency after reuse cycles. Ni/9La–Al2O3 catalyst showed high catalytic activity in SCWG of food waste and had good stability as it was still active for enhancing H2 production when used in SCWG for the third time, which indicated that La promoted Ni/Al2O3 catalysts are potential additive to improve the SCWG of food waste.  相似文献   

12.
    
Toluene is a typical tar compound resulting from biomass gasification. Toluene reforming could generate abundant carbonaceous intermediates that easily aggregate to form coke. Herein, the co-reforming of toluene with methanol or formic acid is conducted, aiming to understand impacts of oxygen-containing intermediates from dissociation of methanol or formic acid on coking tendency and properties of coke formed. The results indicated that the coke percentage in the used catalyst from 34.7% in toluene reforming to 14.7% with co-addition of formic acid while 22.3% with addition of methanol. This results from presence of abundant oxygen-containing intermediates (COx and 1OH) generated from the dissociation of methanol or formic acid, which effectively gasify the C=C species from toluene. Additionally, dissociation of formic acid generates intermediates bearing the C=O functionality that involve in polymerization, forming amorphous coke of aliphatic nature and high tendency to oxidation, which is opposite to that of co-feeding methanol.  相似文献   

13.
An efficient Ag-Pi oxygen-evolving catalyst was fabricated in situ in a phosphate electrolyte solution (pH 12.4). The catalyst approaches an amorphous structure, unlike the reported Ag-based oxygen-evolving catalysts. The catalytic activity for water oxidation of the Ag-Pi catalyst is 11.1 μmol h?1 cm?2 and it has a modest oxygen-evolution overpotential of 457.0 mV at 1 mA cm?2 in 0.1 M K3PO4 electrolyte. The effects of different electrolytes on the formation of the Ag-Pi catalyst were investigated. The active component of the Ag-Pi oxygen-evolving catalyst as a water-splitting catalyst is the AgO phase as determined by X-ray diffractometry and X-ray photoelectron spectroscopy analysis. A Ag-Pi mechanism that includes the Ag(I) and Ag(III) cycles is proposed to explain the electrocatalytic oxygen evolution.  相似文献   

14.
Single crystalline titanium nitride (TiN) nanopowder is synthesized by a mechano-chemical reaction between titanium chloride (TiCl3) and lithium nitride (Li3N) by means of high-energy ball milling. The TiN nanopowder has an average particle size of 6 nm and is introduced into sodium alanate (NaAlH4) as a catalyst. During hydrogen sorption cycles, TiN-catalyzed NaAlH4 exhibits a greater hydrogen desorption rate and higher hydrogen capacity than TiCl3-catalyzed NaAlH4. Contradicting thermodynamic predictions, in situ X-ray diffraction results reveal that TiN nanopowder remains stable and produces no by-products (e.g., Ti-Al compounds) in the reaction with NaAlH4 during hydrogen desorption. In situ Raman spectroscopy also confirms the stability of TiN nanopowder in NaAlH4. This implies that the sustained hydrogen sorption kinetics and hydrogen capacity of TiN-catalyzed NaAlH4 originate from the structural and chemical stability of TiN nanopowder in NaAlH4 for the given conditions of the hydrogen cycle test.  相似文献   

15.
The water–gas shift (WGS) reaction on co-precipitated NiO–ZnO catalysts at different reduction temperatures has been studied by a temperature-programmed reaction using in situ diffuse reflectance infrared Fourier Transform Spectroscopy, coupled with mass spectroscopic (in situ DRIFTS/MS) techniques. The results reveal that a catalyst reduced at 493 K (labeled H220) showed higher activity than one reduced at 673 K (labeled H400) due to the ability of NiO on the H220 catalyst to promote CO conversion of the WGS reaction. In situ DRIFTS/MS studies show that there are three adsorbed species over the H220 catalyst at room temperature: adsorbed CO bands, molecularly adsorbed H2O and carboxyl species. Increasing the temperature to 423 K led to the emergence of CO2 and H2 and the disappearance of carboxyl species. However, the low catalytic activity of the H400 catalyst could be attributed to the conversion of the NiO sites to reduced Ni metal sites, which (i) adsorbed CO as the strong linearly bonded CO on the catalyst surface, slowing down the CO reaction, and (ii) showed a lower H2O uptake.  相似文献   

16.
The hydrogenation behaviour of the Gd0.5Y0.5Ni3.75Al0.25Mg compound was studied by in situ X-ray diffraction under hydrogen pressure and at room temperature. The presence of gadolinium induce an exchange between the 4a (occupied by RE) and 4c sites (occupied by Mg). Nevertheless, only the Gd atoms are mixed by Mg atoms and no occurrence of Y/Mg mixing can be observed. The exchange is then directly correlated with the 4f electrons. Moreover, in the compounds without Gd (i.e. YNi3.75Al0.25Mg) no exchange was observed. The structure of the metal hydrides was carefully investigated by refining the in situ XRD patterns obtained under various H2 pressures. It was concluded that the structure remains cubic during the sorption process with an increase of the cell volume close to 13%, in agreement with the maximum sorption capacity (i.e. 3H/formula unit). No variation of the exchange rate between the hydride and the initial intermetallic can be highlighted. The changes of both the crystallite size and lattice strains during the sorption process (i.e. along the PC isotherms) indicated that a decrease of the crystallinity is observed but no HIA process occurred.  相似文献   

17.
The current status of nuclear-explosive fracturing to improve gas production from tight formations and in situ combustion to enhance oil recovery from existing reservoirs are assessed. The current status of projects Gasbuggy, Rulison and Rio Blanco are presented, and it is pointed out that production predictions were considerably overestimated. Several hypotheses to account for this are presented, but the most important seems to be overstimated formation permeability. the limitations of the current technology are discussed, and the greatest obstacle to progress is recognised as public nonacceptability of the technique. The basic processes of in situ combusion for enhanced oil recovery are presented together with a comparison of the recovery efficiency with those of other processes. It is shown that the method offers the highest percentage of oil recovery in heavy oil prospects of any thermal recovery methods proposed so far. However, the method is expensive and highly complex, but it is likely that it is the most widely applicable and that important improvements will be made in the next decade.  相似文献   

18.
The hydrogenation and dehydrogenation behaviours of the YNi3.5Al0.5Mg compound were studied by in situ X-ray diffraction under hydrogen pressure and at room temperature. The changes of (i) the lattice parameters, (ii) the crystallite size and (iii) the lattice strain during the sorption process (i.e. along the PC isotherms) were studied. These results indicate that the crystallite size decreases by a factor of 2. The micro deformations increase at first and then tend to almost zero at the end of the sorption cycle. This behaviour is explained in terms of co-existence of the metal (i.e. αα phase) and metal hydride (i.e. ββ phase) phases. The change in crystallinity is consistent with the hydrogen induced amorphisation process existing in a lot of AB2 compounds. No anisotropic effects can be highlighted on this pseudo-AB2 compounds in contrary with what could be observed in AB5 compounds.  相似文献   

19.
A series of wet sludge samples with different moisture contents were pyrolyzed in situ steam in a bench-scale fixed bed reactor in order to examine the influence of moisture and temperature on product distribution and gas composition. The results demonstrated that inherent moisture in wet sludge had a great effect on the product yield. The pyrolysis of wet sludge (43.38% moisture content) at 800 °C exhibited maximum H2 yield (7.76 mol kg?1 dry basis wet sludge) and dry gas yield (0.61 Nm3 kg?1) and H2 content of 42.13 vol%. When the moisture exceeded 43.38%, H2 yield and gas yield both tended to decline. It was also shown that the elevated temperature exhibited a significant influence on gas content increase and tar reduction; at the same time, H2 yield and H2 content were increased from 1.83 mol kg?1 dry basis wet sludge and 16.67 vol% to 9.15 mol kg?1 dry basis wet sludge and 45.67 vol%, respectively, as temperature increased from 600 °C to 850 °C. LHV of fuel gas varies from 15.49 MJ Nm?3 to 11.65 MJ Nm?3 because of decrease in CH4 and C2H4 content as temperature increasing. In conclusion, hydrogen rich gas production by pyrolysis of wet sludge which avoided pre-drying process and utilized in situ steam agent from wet sludge is an economic method.  相似文献   

20.
    
The reduction of active sites due to reunion and slow electron transfer rates and low electronegativity greatly reduced the catalytic performance of many two-dimensional materials. In this paper, we synthesized composites for partially reducing graphene oxide and molybdenum disulfide (MoS2@prGO) by one-step hydrothermal method. With the addition of triethanolamine, MoS2 is highly dispersed on the prGO carrier and converted into the 1T phase MoS2 (50.4%). Meanwhile, it helps to increase the electron transfer rate of the MoS2@prGO composites. MoS2@prGO composites presents a high electron cloud density due to the existence of N atoms and prGO, which promotes the occurrence of hydrogen ion conversion hydrogen reaction and decreases the electrocatalytic hydrogen evolution overpotential. MoS2@prGO composites exhibits an overpotential of 263 mV at 10 mA/cm2 and a small Tafel slope of 60 mV/dec. This work is devoted to offer a new prospect and direction for the improvement of electrochemical HER performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号