首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conversions of fuel-N to NO and N2O during devolatilization and char combustion stages of a single coal particle of 7 mm in diameter were investigated in a laboratory-scale flow tube reactor under oxy-fuel fluidized bed (FB) conditions. The method of isothermal thermo-gravimetric analysis (TGA) combing with the coal properties was proposed to distinguish the devolatilization and char combustion stages of coal combustion. The results show that the char combustion stage plays a dominant role in NO and N2O emissions in oxy-fuel FB combustion. Temperature changes the trade-off between NO and N2O during the two stages. With increasing temperature, the conversion ratios of fuel-N to NO during the two stages increase, and the opposite tendencies are observed for N2O. CO2 inhibits the fuel-N conversions to NO during the two stages but promotes those to N2O. Compared with air combustion, the conversion ratios of fuel-N to NO during the two stages are lower in 21%O2/79%CO2, and those to N2O are higher. At <O2> = 21–50% by volume, the conversion ratios of fuel-N to NO during the two stages reach the maximum values at <O2> = 30% by volume, and those to N2O decrease with increasing O2 concentration. H2O suppresses the fuel-N conversions to NO and N2O during the two stages. A higher coal rank has higher total conversion ratios of fuel-N to NO and N2O. Fuel-N, volatile matter, and fixed carbon contents are the important factors on fuel-N conversions to NO and N2O during the two stages. The results benefit the understanding of NO and N2O emission mechanisms during oxy-fuel FB combustion of coal.  相似文献   

2.
A fundamental investigation has been conducted on the combustion behavior of single particles (75–150 μm) of four coals of different ranks: anthracite, semi-anthracite, medium-volatile bituminous and high-volatile bituminous. A laboratory-scale transparent laminar-flow drop-tube furnace, electrically-heated to 1400 K, was used to burn the coals. The experiments were performed in different combustion atmospheres: air (21%O2/79%N2) and four simulated dry oxy-fuel conditions: 21%O2/79%CO2, 30%O2/70%CO2, 35%O2/65%CO2 and 50%O2/50%CO2. The ignition and combustion of single particles was observed by means of three-color pyrometry and high-speed high-resolution cinematography to obtain temperature–time histories and record combustion behaviors. On the basis of the observations made with these techniques, a comprehensive examination of the ignition and combustion behaviors of these fuels was achieved. Higher rank coals (anthracite and semi-anthracite) ignited heterogeneously on the particle surface, whereas the bituminous coal particles ignited homogeneously in the gas phase. Moreover, deduced ignition temperatures increased with increasing coal rank and decreased with increasing oxygen concentrations. Strikingly disparate combustion behaviors were observed depending on the coal rank. The combustion of bituminous coal particles took place in two phases. First, volatiles evolved, ignited and burned in luminous enveloping flames. Upon extinction of these flames, the char residues ignited and burned. In contrast, the higher rank coal particles ignited and burned heterogeneously. The replacement of the background N2 gas of air with CO2 (i.e., changing from air to an oxy-fuel atmosphere) at the same oxygen mole fraction impaired the intensity of combustion. It reduced the combustion temperatures and lengthened the burnout times of the particles. Increasing the oxygen mole fraction in CO2 to 30–35% restored the intensity of combustion to that of air for all the coals studied. Volatile flame burnout times increased linearly with the volatile matter content in the coal in both air and all oxygen mole fractions in CO2. On the other hand, char burnout times increased linearly or quadratically versus carbon content in the coal, depending on the oxygen mole fraction in the background gas.  相似文献   

3.
《能源学会志》2020,93(1):1-14
The difference in combustion performance between brown coal and black coal blended with Eucalyptus woodchip and woodchar in varying blending ratios were examined in the air and oxy firing conditions. On top of the experimental investigation using a drop tube furnace (DTF), a computational fluid dynamics (CFD) model was further developed to interpret these results, validated using the experimental data. The CFD model incorporates a comprehensive reaction for devolatilisation reaction to predict the gas release utilising predictions based on chemical percolation devolatilisation (CPD) model. The heterogeneous reactions are defined based on the intrinsic reaction model that accounts for the influence of char properties in chemical and pore diffusion reactions using a user-defined function (UDF). Moreover, the C–CO2 gasification reaction rate which is critical in an oxy-firing mode was further studied using the CFD tool to determine how the role of gasification varied for various fuel blends. Based on carbon burnout and average particle temperature profiles, the blending of woodchips is highly beneficial to the overall combustion performance in particular for low reactive black coal while its effect on brown coal is marginal. Woodchar and black coal are comparable with similar temperature plots and relatively constant burnout but it behaves relatively inert with a highly reactive brown coal. During oxy firing, increasing the woodchip content enhanced the effect of C–CO2 gasification due to its extremely large pre-exponential factor for the CO2 gasification reactivity which explains the improved burnout. The blending of woodchar caused a gradual reduction in the gasification extent for both coals explained by the low heating rates under which woodchar was pyrolysed and also due to the decrease in the peak particle temperature. However, the observed gasification was found to be less than the expected value based on the linear addition of the two single fuels for both biomass blends.  相似文献   

4.
5.
In this study, combustion from the co-firing of coal and wood biomass, and thermal characteristics such as ignition temperature, burn-out temperature, and activation energy were discussed using a thermogravimetric analyzer (TGA). We investigated the effects of biomass blending with two kinds of pulverized coal (bituminous Shenhua, and sub-bituminous Adaro) under air and oxy-fuel conditions. The coal fraction in the blended samples was set to 1, 0.8, and 0.5. The oxygen fraction in the oxidant was set to 0.21, 0.3, 0.5, and 0.8. The ignition temperature was governed by the fuel composition, particularly in the blended biomass which has a much higher content of volatile matter comparing to coal. However, the burnout temperature, which shows a strong relationship with char combustion, depended on the oxidant ingredients rather than on the fuel components. Thermal characteristics such as ignition, burnout temperature, reaction region, and heat flow were very similar between air and a 0.3 oxygen concentration under oxy-fuel conditions with Shenhua coal.  相似文献   

6.
A high inertinite coal was chosen and its stepwise demineralization samples were prepared. Their structures and combustion characteristics were researched by proximate and ultimate analyses, N2-adsorption isotherms, and thermogravimetric analysis methods. The results show that the specific areas and pore volumes reduce and the average pore diameters enlarge when the minerals in coal samples are gradually removed by deionized water, HCl, and HF. The structure of a coal sample is nearly unchanged while they are treated with deionized water and HCl, and their chemical composition changes in a way when they are treated with HF. A small amount of water soluble minerals in coal obstruct and the majority acid soluble minerals promote coal sample combustion. The bigger the specific areas, the higher the coal sample combustion activity. The moderate moisture in coal can promote sample combustion.  相似文献   

7.
The thermal behavior of semi-anthracite coal, paper sludge and their blends during pyrolysis and combustion processes was investigated in this study. The experiments were conducted in a differential thermogravimetric analyzer at different heating rates (10 K/min, 20 K/min and 30 K/min) and at temperatures ranging from 310 K to 1300 K. The results revealed that de-volatilization of paper sludge occurred earlier with a higher rate, and that the process was further accelerated under oxygen-enriched conditions. The blends had integrative thermal profiles that reflected both paper sludge and coal. In addition, the blends showed different ignition and combustion behavior depending on the percentage of sludge. Two types of non-isothermal kinetic analysis methods were applied to evaluate the combustion processes. The kinetic parameters of the blends confirmed the improved ignition characteristics. In addition, both the TG profiles and activation energy indicated that the combustion of their blends with low percentages of sludge, such as 10 wt.%, were similar to that of coal. These experimental results help explain and predict the behavior of coal and paper sludge blends in practical applications.  相似文献   

8.
《能源学会志》2020,93(3):889-898
Combustion and oxy-fuel combustion characteristics of torrefied pine wood chips were investigated by Thermogravimetric Analysis (TGA). Three torrefaction temperatures (250, 300, and 350 °C) and two residence times (15 and 30 min) were considered. Experiments were carried out at three heating rates of 10, 20, and 40 °C/min. The isoconversional kinetic methods of FWO, KAS, and Friedman were employed to estimate the activation energies. The assessment of uncertainty in obtaining the activation energy values was also considered. The obtained results indicated that due to torrefaction, the O/C and H/C atomic ratios decreased, resulting the 300ºC-30 min and 350ºC-15 min torrefied biomass to be completely embedded in lignite region in van-Krevelen's diagram. Oxy-fuel combustion affected the decomposition of cellulose and lignin components of biomass while the impact on the hemicellulose component was negligible. The kinetic analysis revealed that with the evolution of conversion degree, the activation energy values increased during hemicellulose degradation, remained approximately constant during cellulose decomposition and showed a sharp decrease for lignin decomposition. The activation energy trends were comparable in both air and oxy-fuel combustion conditions, however slight changes in activation energy values were noticed. The highest activation energy value was obtained for 250ºC-30 min torrefied biomass at 183.40 kJ/mol and the lowest value was 72.93 kJ/mol for 350ºC-15 min biomass. The uncertainty values related to FWO method were lower than KAS and Friedman methods. The uncertainty values for FWO and KAS methods were at the range of 5–15%.  相似文献   

9.
Temperature–time histories of burning single coal particles can be obtained with multi-color (multi-wavelength) optical pyrometry. With this method, a number of different temperatures can be deduced from the resulting number of two-color ratios. However, these two-color temperatures do not always agree, causing considerable uncertainty in the temperature measurement. This work used a three-color pyrometer and focused on identifying and minimizing the causes of disparity among the three deduced temperatures. Components of the pyrometer (such as dichroic filters, interference filters and photo-detectors) were modeled mathematically, taking into account their wavelength-dependent properties. The pyrometer was calibrated with both a high-temperature pre-calibrated tungsten lamp, and a moderately-high temperature blackbody cavity, to span the temperature range of interest in pulverized coal combustion. Temperatures were deduced based not only on a suitably-modified pyrometric signal ratio method but also, on a similarly modified pyrometric signal non-linear least-square method, to provide comparison. Results are exemplified by presenting radiation-signal-time and temperature–time profiles of single particles burning in air. The variation of the projected luminous area of burning particles was also computed using both methods, and area–time profiles are presented herein. The char particle emissivity was either treated as a quantity independent of the wavelength (i.e., assuming gray-body behavior), or as a quantity assumed to depend linearly on the wavelength and using pertinent published emissivity data. Finally, a sensitivity analysis was performed to investigate individual effects of parameters, such as the calibration method, the wavelength dependencies of filter transmissivities, and the photo-detector responsivities on the pyrometric signal ratio method temperature consistency.  相似文献   

10.
Co-combustion technology was used to investigate the combustion of bagasse and bagasse blending with coal at different ratios (20%, 50%, and 70% bagasse in weight) using thermogravimetric analysis (TGA). The results show that three stages were observed during bagasse combustion and the main combustion process occurred at the second stage. Compared with combustion of coal, the co-combustion of bagasse blending with coal has lower first peak temperature (Tp1), slightly lower average reaction rate (Rv), and higher reaction rate at the first peak (Rp1). The best blend ratio of bagasse/coal is 20%/80%, and the inhibitory effect is found during the co-combustion.  相似文献   

11.
A mathematical model for the combustion in air of a single entrained spherical coal particle, 30 μm in diameter, has been developed incorporating thermogravimetric analysis data of Whitwick coal. The model is based on a set of ordinary differential equations, describing the reaction rates and the mass and heat transport processes. The system of equations was solved numerically. The combustion mechanism of the particle was described by locating the reaction zone at the solid surface, where gas-phase combustion of volatiles and heterogeneous reaction between gaseous oxygen and the carbon and hydrogen in the solid occurred in parallel. The combustion process was chemical-reaction-rate-controlled, with the oxygen partial pressure at the surface almost that of the surrounding bulk gas. The simulation results using this model, with the kinetic parameters for devolatilization and combustion derived from the experimental thermogravimetric data, are consistent with previously reported combustion lifetimes of approximately 1 s, for particles of this size and rank. They are also consistent with the anticipation that higher ambient gas temperatures should result in shorter burn-out times. The use of thermogravimetric data in the modelling of the combustion of small particles of these low-rank coals is a potentially valuable method for characterization of feedstocks for pulverized coal-fired boilers. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Zhundong coal (ZDc) with a very large reserve is faced with severe problems of slagging and fouling during combustion in boilers because of the high-Na content. Sludge, the by-product of urban sewage treatment, is also faced with the problem in utilization. In this study, the co-combustion of ZDc and sludge was investigated in a laboratory-scale experimental apparatus before further studies in larger-scale setups. The experimental results confirm an interaction between ZDc and sludge during co-combustion, which was mainly caused by the Na catalytic action and improved the combustion performance of the co-fuels. The catalytic effect was particularly significant at low sludge mixing ratios. The reactions between Na-based compounds in ZDc and Si/Al/P-rich minerals in sludge, forming high-melting-point phosphates and aluminosilicates, not only increased Na retention in residual ash reducing the risk of fouling on tail-heating surfaces in boilers, but also raised the ash fusibility of the co-fuels avoiding low-temperature sintering. Even so, to prevent slagging, the high combustion temperature above 900 °C should be avoided during co-combustion because of the high Na retention in residual ash. Moreover, the high heavy metal retention in residual ash decreased the pollution caused by heavy metal volatilization during sludge combustion.  相似文献   

13.
Oxy-fuel combustion has generated significant interest since it was proposed as a carbon capture technology for newly built and retrofitted coal-fired power plants. Research, development and demonstration of oxy-fuel combustion technologies has been advancing in recent years; however, there are still fundamental issues and technological challenges that must be addressed before this technology can reach its full potential, especially in the areas of combustion in oxygen-carbon dioxide environments and potentially at elevated pressures. This paper presents a technical review of oxy-coal combustion covering the most recent experimental and simulation studies, and numerical models for sub-processes are also used to examine the differences between combustion in an oxidizing stream diluted by nitrogen and carbon dioxide. The evolution of this technology from its original inception for high temperature processes to its current form for carbon capture is introduced, followed by a discussion of various oxy-fuel systems proposed for carbon capture. Of all these oxy-fuel systems, recent research has primarily focused on atmospheric air-like oxy-fuel combustion in a CO2-rich environment. Distinct heat and mass transfer, as well as reaction kinetics, have been reported in this environment because of the difference between the physical and chemical properties of CO2 and N2, which in turn changes the flame characteristics. By tracing the physical and chemical processes that coal particles experience during combustion, the characteristics of oxy-fuel combustion are reviewed in the context of heat and mass transfer, fuel delivery and injection, coal particle heating and moisture evaporation, devolatilization and ignition, char oxidation and gasification, as well as pollutants formation. Operation under elevated pressures has also been proposed for oxy-coal combustion systems in order to improve the overall energy efficiency. The potential impact of elevated pressures on oxy-fuel combustion is discussed when applicable. Narrower flammable regimes and lower laminar burning velocity under oxy-fuel combustion conditions may lead to new stability challenges in operating oxy-coal burners. Recent research on stabilization of oxy-fuel combustion is reviewed, and some guiding principles for retrofit are summarized. Distinct characteristics in oxy-coal combustion necessitate modifications of CFD sub-models because the approximations and assumptions for air-fuel combustion may no longer be valid. Advances in sub-models for turbulent flow, heat transfer and reactions in oxy-coal combustion simulations, and the results obtained using CFD are reviewed. Based on the review, research needs in this combustion technology are suggested.  相似文献   

14.
《能源学会志》2020,93(6):2388-2398
This paper studied the effect of high temperature (up to 1873K) and separated combustion mode (volatile combustion and char combustion are separated) on SO2 release characteristics during pulverized coal combustion under O2/CO2 atmosphere. Coal combustion experiments were conducted at different combustion environment temperatures utilizing a high temperature fixed-bed setup. The results show that as temperature rises, the SO2 release curve is transformed from a single-peak process to a double-peak process. In separated combustion, temperature has little effect on the volatile-SO2 (SO2 released during volatile combustion) but brings about a significant effect on char-SO2 (SO2 released during char combustion). Char-SO2 release amount and the ratio of it to fuel-SO2 release amount (total SO2 released during coal combustion) increase with temperature rising. The increase of temperature leads to a dramatic decreasing of sulphur mass fixed in the ash and causes SO2 release amount to rise when temperature is lower than 1573 K. Separated combustion causes a higher SO2 release amount than coupled combustion (the same as conventional combustion, volatile combustion and char combustion are simultaneous). Thermochemistry equilibrium composition calculation results show that alkali metals and alkaline-earth metals are significant in sulphur retention. CaSO4 and Na2SO4 are the main sulphates at high temperatures.  相似文献   

15.
Transient combustion of a single biomass particle in preheated oxygen and nitrogen atmospheres with varying concentration of oxygen is investigated numerically. The simulations are rigorously validated against the existing experimental data. The unsteady temperature and species concentration fields are calculated in the course of transient burning process and the subsequent diffusion of the combustion products into the surrounding gases. These numerical results are further post processed to reveal the temporal rates of unsteady entropy generation by chemical and transport mechanisms in the gaseous phase of the reactive system. The spatio-temporal evolutions of the temperature, major chemical species including CO, CO2, O2, H2 and H2O, and also the local entropy generations are presented. It is shown that the homogenous combustion of the products of devolatilisation process dominates the temperature and chemical species fields at low concentrations of oxygen. Yet, by oxygen enriching of the atmosphere the post-ignition heterogeneous reactions become increasingly more influential. Analysis of the total entropy generation shows that the chemical entropy is the most significant source of irreversibility and is generated chiefly by the ignition of volatiles. However, thermal entropy continues to be produced well after termination of the particle life time through diffusion of the hot gases. It also indicates that increasing the molar concentration of oxygen above 21% results in considerable increase in the chemical and thermal entropy generation. Nonetheless, further oxygen enrichment has only modest effects upon the thermodynamic irreversibilities of the system.  相似文献   

16.
《能源学会志》2020,93(4):1544-1558
The ignition and combustion characteristics of anthracite-rice husk (AC-RH) and bituminous coal-rice husk (BC-RH) pellets were investigated in a vertical heating tube furnace under different experimental condition, for gas temperature (873 K–1073 K) and under air and different oxygen concentration (21–70%) in CO2/O2 atmosphere. The investigation of the ignition and combustion characteristics focused on ignition mechanism, ignition delay, ignition temperature and combustion process. AC-RH pellets had two ignition mechanism in CO2/O2 atmosphere: homogeneous ignition of volatile and heterogeneous ignition of char. Heterogeneous ignition region decreased while homogeneous ignition increased as rice husk blending ratio increased in oxygen concentration-gas temperature plane. Only homogeneous ignition was observed when rice husk blending ratio was 30%. As for BC-RH pellets, only homogeneous ignition occurred in all experimental conditions. The effect of the rice husk blending on the anthracite was more pronounced than the bituminous coal for ignition mechanism. As oxygen concentration increased, a significant reduction in ignition delay and ignition temperature was observed at low rice husk blending ratio and low gas temperature. but at 1073 K, high oxidizer temperature weakened the effect of biomass blending and oxygen concentration on ignition delay and ignition temperature. Meanwhile, at 20% and 30% rice husk blending ratio, it also weakened the effect of oxygen concentration and oxidizer temperature on ignition delay and ignition temperature. In contrast, blending ratio had a more significant effect on ignition behavior. The replacement of N2 by CO2 at the same oxygen concentration contributed to an increase in ignition delay time and internal ignition temperature, which suppressed the ignition behavior. Different ignition mechanisms corresponded to different combustion processes.  相似文献   

17.
Oxy-fuel combustion of solid fuels   总被引:1,自引:0,他引:1  
Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame temperature. The flue gas produced thus consists primarily of carbon dioxide and water. Much research on the different aspects of an oxy-fuel power plant has been performed during the last decade. Focus has mainly been on retrofits of existing pulverized-coal-fired power plant units. Green-field plants which provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several questions remain unanswered and more research and pilot plant testing of heat transfer profiles, emission levels, the optimum oxygen excess and inlet oxygen concentration levels, high and low-temperature fire-side corrosion, ash quality, plant operability, and models to predict NOx and SO3 formation is required.  相似文献   

18.
To facilitate the large-scale utilization of high-alkali and -alkaline earth metals (AAEMs) coals in power generation, the ash deposition behaviors of a typical Zhundong coal in oxy-fuel combustion were experimentally investigated using a drop tube furnace. A wall-temperature-controlled ash deposition probe by which the bulk gas temperature could be measured simultaneously was designed and employed in the experiments. The deposition tendencies, ash morphologies, chemical compositions of deposited ash particles were studied respectively under various oxygen concentrations, bulk gas temperatures, probe surface temperatures and probe exposure times. The experimental results revealed that the oxygen concentration had a significant influence on the deposition behavior during oxy-fuel combustion of high-alkali coal. Compared with air case, more fine ash particles were generated during the combustion of Zhundong coal in 21% O2/79% CO2 atmosphere but the deposition tendency was weaker. However, a higher oxygen concentration could aggravate the tendency of ash deposition. The high contents of iron (Fe), calcium (Ca), sulfur (S), and sodium (Na) in Zhundong coal could result in the generations of low-melting point compounds. Calcium in flue gas existed as CaO and was captured prior to SO3 by the probe surface during the ash deposition process. At the initial 30 min of the ash deposition process, the dark spherical fine ash particles rich in Fe, Na, oxygen (O), and S were largely produced, while in the range of 60–90 min the light spherical fine ash particles with high contents of Ca, barium (Ba), O, and S were generated on the other hand. The deposition mechanisms at different stages were different and the melted CaO (BaO)/CaSO4 (BaSO4) would give rise to a fast growth rate of ash deposit.  相似文献   

19.
Due to the limits of reserves and price for the high rank coal, the low rank coal has been employed as fuel for power generation in China and will be eventually employed in the world. To burn low rank coal, centrally fuel-rich swirl coal combustion burner has been studied in Harbin Institute of Technology. This paper reviews and analyzes the major research results. The work has included both experiments and numerical simulation. The experiments were conducted using small-scale single-phase experimental equipment, a gas/particle two-phase test facility and 200- and 300-MWe wall-fired utility boilers. For the burner, the primary air and glass beads partially penetrate the central recirculation zone and are then deflected radially. At the center of the central recirculation zone, there is high particle volume flux and large particle size. For the burners the local mean CO concentrations, gas temperatures and temperature gradient are higher, and the mean concentrations of O2 and NOx in the jet flow direction in the burner region are lower. Moreover, the mean O2 concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. Centrally fuel-rich burners have been successfully used in 200- and 300-MWe wall-fired pulverized coal utility boilers.  相似文献   

20.
This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O2 was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken.Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号