首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《能源学会志》2020,93(2):581-590
Hydrothermal liquefaction (HTL) of Ulva prolifera macroalgae (UP) was carried out in the presence of three zeolites based catalysts (ZSM-5, Y-Zeolite and Mordenite) with the different weight percentage (10–20 wt%) at 260–300 °C for 15–45 min. A comparison between non-catalytic and catalytic behavior of ZSM-5, Y-Zeolite, and Mordenite in the conversion of Ulva prolifera showed that is affected by properties of zeolites. Maximum bio-oil yield for non-catalytic liquefaction was 16.6 wt% at 280 °C for 15 min. The bio-oil yield increased to 29.3 wt% with ZSM-5 catalyst (15.0 wt%) at 280 °C. The chemical components and functional groups present in the bio-oils are identified by GC-MS, FT-IR, 1H-NMR, and elemental analysis techniques. Higher heating value (HHV) of bio-oil (32.2–34.8 MJ/kg) obtained when catalyst was used compared to the non-catalytic reaction (21.2 MJ/kg). The higher de-oxygenation occurred in the case of ZSM-5 catalytic liquefaction reaction compared to the other catalyst such as Y-zeolite and mordenite. The maximum percentage of the aromatic proton was observed in bio-oil of ZSM-5 (29.7%) catalyzed reaction and minimum (1.4%) was observed in the non-catalyst reaction bio-oil. The use of zeolites catalyst during the liquefaction, the oxygen content in the bio-oil reduced to 17.7%. Aqueous phase analysis exposed that presence of valuables nutrients.  相似文献   

2.
《能源学会志》2020,93(1):425-435
A higher amount of oxygenates is the main constraint for higher yield and quality of aromatics in catalytic pyrolysis while a study of hydrocarbon production with a balance of reactive species lies importance in the catalytic upgrading of pyrolytic vapor. Catalytic pyrolysis of pinewood sawdust over acidic (ZSM-5) and basic (CaO) catalyst was conducted by means of Py-GC/MS to evaluate the effect of biomass to catalyst loading ratio on aromatic hydrocarbon production. Catalytic pyrolysis with four different biomass to catalyst ratios (0.25:1, 0.5:1, 1:1, and 2:1) and non-catalytic pyrolysis were conducted. It has been obtained that ZSM-5 showed better catalytic activity in terms of a high fraction of aromatic hydrocarbon. The ZSM-5 catalyst showed a potential on the aromatization as the yield of aromatic hydrocarbon was increased with a higher amount of ZSM-5 catalyst and the highest yield of aromatics (42.19 wt %) was observed for biomass to catalyst ratio of 0.25:1. On the other hand, basic CaO catalyst was not selective to aromatic hydrocarbon from pinewood sawdust but explored high deacidification reaction in pyrolytic vapor compared to ZSM-5 catalyst, whereas non-catalytic pyrolysis resulted in acidic species (13.45 wt %) and phenolics (46.5 wt %). Based on the results, ZSM-5 catalyst can only be suggested for catalytic pyrolysis of pinewood sawdust for aromatic hydrocarbon production.  相似文献   

3.
《能源学会志》2020,93(4):1737-1746
The aim of this study was to investigate the potential of combined catalyst (ZSM-5 and CaO) for high quality bio-oil production from the catalytic pyrolysis of pinewood sawdust that was performed in Py-GC/MS and fixed bed reactor at 500 °C. In Py-GC/MS, the maximum yield of aromatic hydrocarbon was 36 wt% at biomass to combined catalyst ratio of 1:4 where the mass ratio of ZSM-5 to CaO in the combined catalyst was 4:1. An increasing trend of phenolic compounds was observed with an increasing amount of CaO, whereas the highest yield of phenolic compounds (31 wt%) was recorded at biomass to combined catalyst ratio of 1:4 (ZSM-5: CaO - 4:1). Large molecule compounds could be found to crack into small molecules over CaO and then undergo further reactions over zeolites. The water content, higher heating value, and acidity of bio-oil from the fixed bed reactor were 21%, 24.27 MJkg−1, and 4.1, respectively, which indicates that the quality of obtained bio-oil meets the liquid biofuel standard ASTM D7544-12 for grade G biofuel. This research will provide a significant reference to produce a high-quality bio-oil from the catalytic pyrolysis of woody biomass over the combined catalyst at different mass ratios of biomass to catalyst.  相似文献   

4.
The present study is aimed to investigate the upgrading of beech sawdust pyrolysis bio-oil through catalytic cracking of its vapors over Fe-modified ZSM-5 zeolite in a fixed bed tubular reactor. The zeolite supported iron catalyst was successfully prepared with varying metal loading ratios (1, 5, 10 wt%) via dry impregnation method and further characterized by BET, XRD, and SEM-EDX techniques. TG/FT-IR/MS analysis was used for the detection of biomass thermal degradation. Product yields of non-catalytic and catalytic pyrolysis experiments were determined and the obtained results show that bio-oil yields decreased in the presence of catalysts. Besides, the bio-oil composition is characterized by GC/MS. It was indicated that the entity of the ZSM-5 and Fe/ZSM-5 catalyst reveal a significant enhancement quality of the pyrolysis products in comparison with non-catalytic experiment. The catalyst increased oxygen removal from the organic phase of bio-oil and further developed the production of desirable products such as phenolics and aromatic compounds.  相似文献   

5.
《能源学会志》2020,93(2):605-613
The Fe-, Co-, Cu-loaded HZSM-5 zeolites were prepared via impregnation method. The upgrading by catalyst on biomass pyrolysis vapors was conducted over modified zeolites to investigate their catalytic upgrading performance and anti-coking performance. The Brønsted acid sites amount on Cu-,Co-loaded HZSM-5 decreased sharply, while that of Lewis both increased. The yield of liquid fraction and refined bio-oil over metal loaded ZSM-5 catalysts decreased, while that of char almost kept constant. The physical property of refined bio-oil was promoted in terms of pH value, dynamic viscosity and higher heating value (HHV). FT-IR analysis revealed that the chemical structure of refined bio-oil obtained over Fe-, Co-, Cu-loaded HZSM-5 zeolites was highly similar. The yield of monocyclic aromatic and aliphatic hydrocarbon over Fe-,Co-loaded HZSM-5 were boosted by around 2.5 times compared with original ZSM-5 zeolites. Data analysis revealed that Cu/HZSM-5 presented the worst deoxygenation ability. The anti-coking capability of Fe/HZSM-5 was obviously better, i.e., the coke content showed an approximate decrease of 38%. Thus, this study provided an efficient Fe/HZSM-5 catalysts for preparation of bio-oil derived from catalytic upgrading of biomass pyrolysis vapor.  相似文献   

6.
《能源学会志》2019,92(5):1348-1363
In order to understand the pyrolysis mechanism, reaction kinetic and product properties of biomass and select suitable agricultural and forestry residues for the generation desired products, the pyrolysis and catalytic pyrolysis characteristics of three main components (hemicellulose, cellulose, and lignin) of biomass were investigated using a thermogravimetric analyzer (TGA) with a fixed-bed reactor. Fourier transform infrared spectroscopy (FTIR) and elemental analysis were used for further characterization. The results showed that: the thermal stability of hemicellulose was the worst, while that of cellulose was higher with a narrow range of pyrolysis temperatures. Lignin decomposed over a wider range of temperatures and generated a higher char yield. After catalytic pyrolysis over HZSM-5 catalyst, the conversion ratio increased. The ratio for the three components was in the following order: lignincellulose < biomass < xylan. The Starink method was introduced to analyze the thermal reaction kinetics, activation energy (Ea), and the pre-exponential factor (A). The addition of HZSM-5 improved the reactivity and decreased the activation energy in the following order: xylan (30.54%) > biomass(15.41%) > lignin (14.75%) > cellulose (6.73%). The pyrolysis of cellulose gave the highest yield of bio-oil rich in levoglucosan and other anhydrosugars with minimal coke formation. Xylan gave a high gas yield and moderate yield of bio-oil rich in furfural, while lignin gave the highest solid residue and produced the lowest yield of bio-oil that was rich in phenolic compounds. After catalytic pyrolysis, xylan gave the highest yield of monocyclic aromatic hydrocarbons, 76.40%, and showed selectivity for benzene and toluene. Cellulose showed higher selectivity for xylene and naphthalene; however, lignin showed enhanced for selectivity of C10 + polycyclic aromatic hydrocarbons. Thus, catalytic pyrolysis method can effectively improve the properties of bio-oil and bio-char.  相似文献   

7.
The conversion of biomass to produce high-valued chemical aromatic intermediates such as benzene (B), toluene (T), ethylbenzene (E), xylene (X), naphthalene (N) has attached booming interests. Herein, in order to obtain BTEXN aromatics on the hydrocracking of Jatropha oil, several LaNiMo/ZSM-5 catalysts (La loading from 0.5 to 15 wt%) by alkali treatment and metal impregnation methods were synthesized and investigated. Fundamentally, we found the alkali treatment engendered more mesoporosity to ZSM-5 and resulted in higher catalytic activity. It bears emphasis that further metal impregnated catalyst NiMo/ZSM-5 could improve the aromatics yield due to the increase of metal active sites and acidity sites. Besides, we noted that La loading had positive effects on coke reduction, catalytic stability and catalyst lifetime. To sum up, results confirmed the favorable 1 wt% La–NiMo/ZSM-5 had maximum 75 wt% BTEXN yield, longer catalyst lifetime for 100 h and decreased carbon deposits by 1.11%.  相似文献   

8.
The pyrolytic conversion of chlorella algae to liquid fuel precursor in presence of a catalyst (Na2CO3) has been studied. Thermal decomposition studies of the algae samples were performed using TGA coupled with MS. Liquid oil samples were collected from pyrolysis experiments in a fixed-bed reactor and characterized for water content and heating value. The oil composition was analyzed by GC-MS. Pretreatment of chlorella with Na2CO3 influences the primary conversion of chlorella by shifting the decomposition temperature to a lower value. In the presence of Na2CO3, gas yield increased and liquid yield decreased when compared with non-catalytic pyrolysis at the same temperatures. However, pyrolysis oil from catalytic runs carries higher heating value and lower acidity. Lower content of acids in the bio-oil, higher aromatics, combined with higher heating value show promise for production of high-quality bio-oil from algae via catalytic pyrolysis, resulting in energy recovery in bio-oil of 40%.  相似文献   

9.
In this study, sawdust was selected as the raw material for biomass pyrolysis to obtain organic products. The catalyst was modified with two elements (Fe and Zn). Through analysis of the catalytic products, we attempted to identify a pyrolysis catalyst that can improve the yield of aromatic hydrocarbon products. ZSM-5, modified with Fe and Zn, was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and Brunauer–Emmett–Teller (BET) measurements. Tube furnace and flash pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) were used to comprehensively investigate the characteristics of the products of biomass pyrolysis. The highest yield of phenols was obtained using the Fe-modified ZSM-5 catalyst, which was 18.30% higher than the yield obtained by the pure ZSM-5 catalyst. The lowest yield of acid products was obtained by single-metal-supported catalytic pyrolysis with Fe or Zn, which was 50.66% lower than the yield obtained by direct pyrolysis. During the pyrolysis of biomass using metal-modified catalysts, the production of aromatic hydrocarbons was greatly improved. Among them, compared with direct pyrolysis, the Fe-Zn co-modified ZSM-5 catalyst exhibited the weakest promotion of aromatic hydrocarbon formation, but there was still a 68.50% improvement. Although the co-modified catalyst did not show absolute advantages under the conditions used for this experiment, the improvements in the production of aromatics and phenolic products also showed its potential for improving bio-oil products. Under the action of Fe-modified catalysts, the most abundant components in the gas product were CO and CO2, which reached levels as high as 53.45% and 15.34%, respectively, showing strong deoxidation capabilities. Therefore, Fe-modified ZSM-5 catalysts were found to better promote the formation of aromatic hydrocarbon products of biomass pyrolysis.  相似文献   

10.
《能源学会志》2020,93(4):1313-1323
In this work, the solar catalytic pyrolysis of Spirulina platensis microalgae using hydrotalcite as a catalyst was studied to improve the yield and quality of the bio-oil obtained from the algae. The effects of biomass loading, reaction time, and catalyst percentage on the product distribution and bio-oil composition were evaluated. The desirability function was used to identify the pyrolysis conditions that maximize the bio-oil yield and its hydrocarbon content. The experimental results indicated that the catalytic pyrolysis of Spirulina platensis produced considerable solid product content, and high liquid yields were reached in some tests favored by the catalyst presence. The hydrotalcite contributed to increasing the hydrocarbon formation in the bio-oil at lower reaction times, demonstrating the great performance of this catalyst for microalgae pyrolysis. At the optimal conditions, a bio-oil yield of 35.94% with 21.71% hydrocarbon content was achieved.  相似文献   

11.
Using Ni/SiC as a catalyst, bagasse was microwave-assisted pyrolysis in a homemade quartz reactor. The results showed that with the continuous increase of Ni content, the experimental catalytic pyrolysis effect on bio-oil became more and more obvious, and the hydrogen yield gradually increased. When Ni content exceeded 8%, the hydrogen yield and bio-oil catalytic pyrolysis efficiency decreased, and the lowest bio-oil yield was 9.55% when Ni content was 15%, With the increase of power, the catalytic cracking efficiency and hydrogen yield of bio-oil increased, With the increase of catalyst dosage, the catalytic efficiency and the hydrogen yield increase gradually. When the catalyst quality exceeds 1/4 of the material, the growth rate of catalytic efficiency decreases, after alkali treatment, the variation law of hydrogen yield and bio-oil is consistent with that without alkali treatment. In contrast, more hydrogen can be produced after alkali treatment. Under the optimum conditions, the hydrogen yield was 35.85 g/kg biomass.  相似文献   

12.
This study investigated three different types of catalysts: Ni/HMS-ZSM5, Fe/HMS-ZSM5, and Ce/HMS-ZSM5 in the thermochemical decomposition of green microalgae Spirulina (Arthrospira) plantensis. First, non-catalytic pyrolysis tests were conducted in a temperature ranges of 400–700 °C in a dual-bed pyrolysis reactor. The optimum temperature for maximized liquid yield was determined as 500 °C. Then, the influence of acid washing on bio-products upgrading was studied at the optimum temperature. Compared to the product yields from the pyrolysis of raw spirulina, a higher bio-oil yield (from 34.488 to 37.778 %wt.) and a lower bio-char yield (from 37 to 35 %wt.) were observed for pretreated spirulina, indicating that pretreatment promoted the formation of bio-oil, while it inhibited the formation of biochar from biomass pyrolysis. Finally, catalytic pyrolysis experiments of pretreated-spirulina resulted that Fe as an active phase in catalyst exhibited excellent catalytic activity, toward producing hydrocarbons and the highest hydrogen yield (3.81 mmol/gr spirulina).  相似文献   

13.
In situ catalytic fast pyrolysis (CFP) of biomass was conducted with base or acid catalysts in a bench-scale fluidized bed pyrolyzer. Complete mass balances were performed, allowing for quantitatively investigating the catalytic impacts on the final bio-oil composition. Acidic catalysts exhibited relatively higher activities for decomposition of sugar and pyrolytic lignin, dehydration, decarbonylation, and coke formation, as relative to base catalysts. Carbon balances revealed that a significant amount of carbon in bio-oil was transformed to coke during CFP. Due to the decrease in the bio-oil yield during CFP, significantly less energy was recovered in CFP products than in control fast pyrolysis products. CFP was also performed in micropyrolyzer and the results were compared with those in the bench-scale reactor to determine the consistency across the experimental systems. Different from the bench-scale pyrolyzer, the basic catalyst more strongly influenced the micropyrolyzer products and the discrepancies suggest a more rapid deactivation of the basic catalyst.  相似文献   

14.
Cotton seed, as a biomass source, is pyrolysed in a tubular fixed-bed reactor under various sweeping gas (N2) flow rates at different pyrolysis temperatures. In the non-catalytic work, the maximum bio-oil yield was attained as 48.30% at 550 °C with a sweeping gas flow rate of 200 mL min−1. At the optimum conditions, catalytic pyrolysis of biomass samples was performed with various amounts of MgO catalyst (5, 10, 15, and 20 wt.% of raw material). Catalyst addition decreased the quantity of bio-oil yet increased the quality of bio-oil in terms of calorific value, hydrocarbon distribution and removal of oxygenated groups. It was observed that increasing the amount of catalyst used, decreased the oil yields while increased the gas and char yields. Bio-oils obtained at the optimum conditions were separated into aliphatic, aromatic and polar sub-fractions. After the application of column chromatography, bio-oils were subjected into elemental, FT-IR and 1H NMR analyses. Aliphatic sub-fractions of bio-oils were analyzed by GC–MS. It was deduced that the fuel obtained via catalytic pyrolysis mainly consisted of lower weight hydrocarbons in the diesel range. Finally, obtained results were compared with petroleum fractions and evaluated as a potential source for liquid fuels.  相似文献   

15.
The aim of this study was to investigate the behavior of two distinct microalgae species during solar catalytic pyrolysis and the influence of their chemical composition and the process variables (biomass charge, reaction time, and catalyst percentage) on the product yields and bio-oil composition. For this purpose, solar catalytic pyrolysis of Spirulina platensis and Chlamydomonas reinhardtii was performed using hydrotalcite-derived mixed oxides as the catalyst. To gain more insight into the effect of composition on pyrolysis behavior, the biomasses were analyzed using various analytical techniques. The results indicated that a high percentage of catalyst (47.1%) culminated in liquid yields of 42.48% and 21.31% for Chlamydomonas pyrolysis and Spirulina pyrolysis, respectively. Additionally, Spirulina pyrolysis resulted in higher solid yields compared with Chlamydomonas pyrolysis. The results also showed that Spirulina bio-oil was rich in oxygenated compounds, probably due to its high carbohydrate content, whereas Chlamydomonas bio-oil was rich in nitrogenated compounds because of its higher protein content. The microalgae composition (lipids, protein, carbohydrates) exerted a large influence on the catalytic pathways and led to differences in yield and product distribution. A high percentage of catalysts preferentially promoted a deoxygenation of the bio-oil obtained from Spirulina solar pyrolysis compared with that obtained from Chlamydomonas pyrolysis.  相似文献   

16.
In this study, pyrolysis of tomato waste has been performed in fixed bed tubular reactor at 500 °C, both in absence and presence of Cu/Al2O3 catalyst. The influences of heating rate, catalyst preparation method and catalyst loading on bio-oil yields and properties were examined. According to pyrolysis experiments, the highest bio-oil yield was obtained as 30.31% with a heating rate of 100 °C/min, 5% Cu/Al2O3 catalyst loading ratio and co-precipitation method. Results showed that the catalysts have strong positive effect on bio-oil yields. Bio-oil quality obtained from fast catalytic pyrolysis was more favorable than that obtained from non-catalytic and slow catalytic pyrolysis.  相似文献   

17.
《能源学会志》2020,93(6):2435-2443
Co-pyrolysis of poplar wood sawdust and high-density polyethylene at a mass ratio of 1:1 over acid-modified ZSM-5 was studied by Py-GC/MS at catalyst to feedstock mass ratio of 1:1 to enhance hydrocarbon formation in the pyrolytic vapour. Catalysts were modified by wet impregnation using sulfuric acid (0.1 M, 0.3 M, 0.5 M and 0.7 M). Results showed that acid treatment affects the catalytic activity of ZSM-5 by changing the amount of acid sites. Co-pyrolysis with HDPE resulted in high relative content of olefin(53.32%) than pyrolysis of poplar (16.6%) and significantly reduces the amount of oxygenates except alcohol. In catalytic co-pyrolysis over acid-modified ZSM-5, the share of olefin was between 56.20% and 59.7%, whereas the lowest amount was 49.53% over P-ZSM-5. The relative content of alkane over acid-modified ZSM-5 was in the range of 23.29–25.96% and higher than that with P-ZSM-5 (21.18%). Importantly, ZSM-5 (0.5 M) was most selective one for aromatic hydrocarbon (12.72%), leading to the maximum share of hydrocarbon of 93.18% when the lowest value was 76.84% over P-ZSM-5. Furthermore, ZSM-5 (0.5 M) showed better deoxygenation among catalysts used in this study. This research could be suggested as a reference for the research of co-pyrolysis of biomass and plastic.  相似文献   

18.
The performance of three catalysts during slow catalytic pyrolysis of rapeseed cake from 150 to 550 °C over a time period of 20 min followed by an isothermal period of 30 min at 550 °C was investigated. Na2CO3 was premixed with the rapeseed cake, while γ-Al2O3 and HZSM-5 were tested without direct biomass contact. Catalytic experiments resulted in lower liquid and higher gas yields. The total amount of organic compounds in the pyrolysis liquid was considerably reduced by the use of a catalyst and decreased in the following order: non-catalytic test (34.06 wt%) > Na2CO3 (27.10 wt%) > HZSM-5 (26.43 wt%) > γ-Al2O3 (21.64 wt%). In contrast, the total amount of water was found to increase for the catalytic experiments, indicating that dehydration reactions became more pronounced in presence of a catalyst. All pyrolysis liquids spontaneously separated into two fractions: an oil fraction and aqueous fraction. Catalysts strongly affected the composition and physical properties of the oil fraction of the pyrolysis liquid, making it promising as renewable fuel or fuel additive. Fatty acids, produced by thermal decomposition of the biomass triglycerides, were converted into compounds of several chemical classes (such as nitriles, aromatics and aliphatic hydrocarbons), depending on the type of catalyst. The oil fraction of the pyrolysis liquid with the highest calorific value (36.8 MJ/kg) was obtained for Na2CO3, while the highest degree of deoxygenation (14.0 wt%) was found for HZSM-5. The aqueous fraction of the pyrolysis liquid had opportunities as source of added-value chemicals.  相似文献   

19.
The aim of the present work is to produce hydrogen from biomass through bio-oil. Two possible upgrading routes are compared: catalytic and non-catalytic steam reforming of bio-oils. The main originality of the paper is to cover all the steps involved in both routes: the fast pyrolysis step to produce the bio-oils, the water extraction for obtaining the bio-oil aqueous fractions and the final steam reforming of the liquids. Two reactors were used in the first pyrolysis step to produce bio-oils from the same wood feedstock: a fluidized bed and a spouted bed. The mass balances and the compositions of both batches of bio-oils and aqueous fractions were in good agreement between both processes. Carboxylic acids, alcohols, aldehydes, ketones, furans, sugars and aromatics were the main compounds detected and quantified. In the steam reforming experiments, catalytic and non-catalytic processes were tested and compared to produce a hydrogen-rich gas from the bio-oils and the aqueous fractions. Moreover, two different catalytic reactors were tested in the catalytic process (a fixed and a fluidized bed). Under the experimental conditions tested, the H2 yields were as follows: catalytic steam reforming of the aqueous fractions in fixed bed (0.17 g H2/g organics) > non-catalytic steam reforming of the bio-oils (0.14 g H2/g organics) > non-catalytic steam reforming of the aqueous fractions (0.13 g H2/g organics) > catalytic steam reforming of the aqueous fractions in fluidized bed (0.07 g H2/g organics). These different H2 yields are a consequence of the different temperatures used in the reforming processes (650 °C and 1400 °C for the catalytic and the non-catalytic, respectively) as well as the high spatial velocity employed in the catalytic tests, which was not sufficiently low to reach equilibrium in the fluidized bed reactor.  相似文献   

20.
《能源学会志》2019,92(4):855-860
Catalyst plays a key role in the upgrading of fast pyrolysis bio-oil to advanced drop-in fuel, while the selectivity and deactivation of catalyst still remain the biggest challenge. In this study, three Ru catalysts with activated carbon, Al2O3 and ZSM-5 as supports were prepared and tested in bio-oil hydrotreating process. The physical properties and components of upgraded bio-oil were detected to identify the difference in catalytic performance of three catalysts. The results showed that furan, phenols and their derivatives in fast pyrolysis bio-oil could be hydrogenated to alkanes, alkenes and benzenes over Ru catalysts. The different components of oil phase over three catalysts may be resulted from the surface properties of three supports. Activated carbon supported Ru catalyst showed the best catalytic performance and was suggested to be the most promising catalyst for pyrolysis bio-oil upgrading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号