首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LaNi5 alloy can be utilized to directly store and release hydrogen in mild condition, thus it is considered as a long-term safe and stable solid-state hydrogen storage material. In this work, LaNi5H5 was used as the solid-state hydrogen source in the CO2 methanation reaction. Impressively, the carbon dioxide conversion can be achieved to nearly 100% under 3 MPa mixed gas at 200 °C. The microstructure and composition analysis results reveal that the high catalytic activity may originate from the promoted elementary steps over in situ formed metallic Ni nanoparticles during the CO2 methanation process. More importantly, as the lowered reaction temperature prevented the agglomeration of Ni nanoparticles, this catalyst exhibited durable stability with 99% conversion rate of CO2 retained after 400 h cycling test.  相似文献   

2.
In this study, tungsten oxide with a high specific surface area was fabricated using a nanocasting technique and used to prepare support for nickel catalysts for CO methanation. Additionally, Mg was further introduced as a promoter for tuning the catalytic performance. The 25Ni/WO3 catalyst demonstrated a relatively high CO conversion, but a poor CH4 selectivity; however, with the addition of 7 wt% Mg to the catalyst, the CH4 selectivity reached 92% at a temperature of 440 °C. The improved CH4 selectivity can be attributed to the enhanced CO dissociation, which was related to the reduced Ni particle size, as well as the enhanced Ni electron cloud density. The role of a physical barrier and electron transfer of MgO induces an enhancement of the metal–support interactions, which are conducive to decreasing the Ni particle size. Meanwhile, the electron transfer performance of MgO constitutes a crucial factor in enhancing the Ni electron cloud density. Furthermore, with benefit from the inhibition of agglomeration of the Ni particles by the MgO promoter, a significantly better catalytic stability was also observed on 7Mg25Ni/WO3 than with the 25Ni/WO3 catalyst.  相似文献   

3.
Ni catalysts supported on mixed ZnOAl2O3 and on pure ZnO and Al2O3 were prepared, characterized by XRD, TPR, and XPS, and tested in long-term methane dry reforming at low temperature (400 °C). Depending on Zn/Al ratio in the supports, the catalysts varied in their physico-chemical properties and exhibited different trends in their on-stream catalytic activity. Catalysts with high alumina content consist of a mixture of alumina and zinc aluminate phases with metallic Ni particles on their surface. These samples show medium activity for reforming and high on-stream stability. The catalysts on mixed Zn-rich supports were more active than those on Al-rich supports and exhibited maxima in their activity after 30–40 h on stream, while Ni on pure ZnO possessed very low activity. Such contrast in performance of Zn-rich catalysts was explained by detected transformation of initially formed NiZn alloy to a mixture of Ni and Ni3ZnC0.7 particles that are assumed to have higher activity for reforming. Moreover, the size of Ni-containing particles on Zn-rich supports decreased under reaction conditions resulting in higher Ni dispersion.  相似文献   

4.
Nowadays, increasing environmental pollution as well as restrictions on the use of fossil fuels have shifted the attention toward using hydrogen as a new source of clean and effective energy. Additionally, hydrogen and syngas are employed as feedstock for the production of valuable materials in the petrochemical industry. Methane steam reforming is the main procedure for the hydrogen and syngas production. In this study, Taguchi design of experiment (L9) was used to investigate the effects of simultaneous presence of copper (Cu) and Zinc (Zn) metals on different Ni/Al2O3 catalyst loads. It should be noted that some of the catalysts were characterized using XRD, BET, SEM and TGA analyses. According to the Taguchi design, it was concluded that the increment of Cu content enhances the catalyst stability and increases the CO selectivity. Increasing Zn content advocated CH4 conversion, H2 yield, and less selectivity toward the CO production. The XRD, BET and SEM test results revealed that the addition of Cu resulted in better distribution of active support phase. The TGA results indicated that the addition of Cu and Zn stabilized the catalyst activity; in this case, Cu was more effective than Zn. The overall results demonstrated that 15% load of Ni on Al2O3 support, simultaneous addition of Cu and Zn loads of 1% and 5%, respectively, enhanced the catalyst stability and activity and improved the catalyst performance in the selective hydrogen production as well.  相似文献   

5.
Both metal sites and alkaline sites are essential parameters for a catalyst used in methanation of CO2. This study investigated the impacts of the relative abundance of metal sites and alkaline sites on the catalytic performances of nickel-based catalyst with attapulgite, a natural mineral, as the support. The results showed that the increase of nickel loading to attapulgite significantly decreased the abundance of alkaline sites, remarkably enhanced the catalytic activity, and suppressed the formation of CO. The in situ DRIFTS characterization of the CO2 methanation indicated that the alkaline sites favored formation of the oxygen-containing reaction intermediates such as CO1, –OH, 1CO2, formate, carbonate and bicarbonate species. In comparison, metallic nickel species promoted their further hydrogenation to form CH4. Besides the absorption/activation of 1CO2 was more preferable on surface of metallic nickel, but not on the alkaline sites. The availability of the alkaline sites was not as important as the metallic nickel species for preparation of an efficient catalyst for CO2 methanation.  相似文献   

6.
Under the scenario of an increasing sharing of renewable energy, Power to Gas technology may offer an effective and valuable solution for surplus energy management, accounting for a large and long-term chemical storage. In the present study an innovative Power to Synthetic Natural Gas (SNG) process has been described and investigated from a techno-economic and environmental point of view. The configuration is based on a methanation process, directly applied on flue gas stream thus acting both as a CO2 capture and sequestration technology and as renewable energy storage mechanism. Reacting hydrogen is produced via water electrolysis powered by surplus of renewable energy, normally low-priced otherwise wasted. With a reference capacity factor around 4000 h/y, the resulting SNG cost is 0.34 €/Nm3 based on a carbon tax equal to 30 €/t CO2. The obtained results are attractive and consistent with the fact that future investment cost for water electrolysis is decreasing accordingly.  相似文献   

7.
Introducing promoters on Ni-based catalysts for CO2 methanation have been proved to be positive for enhancing their performance. And the correlation of the promotion mechanism and the reaction pathway is significant for designing efficient catalysts. In this contribution, series of Zr species promoted SBA-15 supported Ni catalysts were prepared by citric acid complexation method under a range of Zr/Ni atomic ratios from 0 to 2.5. In situ and ex situ characterizations were carried out. It was found that the addition of citric acid was conductive to improve CH4 selectivity due to the higher concentrations of Ni0 confined in SBA-15, harvesting sufficient H atoms for CH4 formation following formate pathway via a formyl intermediate. Furthermore, a coverage layer of Zr species was found on the support at Zr/Ni = 1.7, which interacted with the Ni particles, providing higher concentrations of medium basic sites for CO2 activation. Accordingly, the optimum catalytic performance was obtained on ZrNi-1.7(CI), achieving CO2 conversion as high as 78.1% and nearly 100% CH4 selectivity at 400 °C, following the formate hydrogenation pathway. In addition, the ZrNi-1.7(CI) showed good stability owing to the confinement effect of SBA-15 and the Ni–Zr interaction, no carbon deposits were detected after 50 h test.  相似文献   

8.
Supported Ni/Al2O3 catalysts are widely used in chemical industries. Regeneration of the deactivated Ni catalysts caused by sintering of Ni nanoparticles and carbon deposition after long-term operation is significant but still very challenging. In this work, a feasible strategy via solid-phase reaction between NiO and Al2O3 followed by a controlled reduction is developed which can burn out the deposited carbon and re-disperse the Ni nanoparticles well, thus regenerating the deactivated Ni catalysts. To demonstrate the feasibility of this method, Ni catalyst supported on α-Al2O3 (Ni/Al2O3) for CO methanation reaction was selected as a model system. The structure and composition of the fresh, deactivated and regenerated Ni/Al2O3 catalysts were comprehensively characterized by various techniques. The reduction and redistribution of Ni species as well as the interfacial interaction between Ni nanoparticles and Al2O3 support were investigated in detail. It is found that calcining the deactivated Ni/Al2O3 in air at high temperature can burn out the coke, while the sintered Ni species can combine with superficial Al2O3 to form a surface NiAl2O4 spinel phase through the solid-phase reaction. After the controlled reduction of the NiAl2O4 spinel, highly dispersed Ni nanoparticles on Al2O3 support are re-generated, thus achieving the regeneration of the deactivated Ni/Al2O3. Interestingly, compared with the fresh Ni/Al2O3 catalyst, the sizes of Ni nanoparticles became even smaller in the regenerated ones. The regenerated Ni/Al2O3 showed much enhanced catalytic activity in CO methanation and became more resistant to carbon deposition, due to the better dispersed Ni nanoparticles and strengthened interaction between Ni and Al2O3 support. Our work not only addresses the long existing catalyst regeneration issue, but also provides effective and renewable Ni-based catalysts for CO methanation.  相似文献   

9.
Ordered mesoporous silica-carbon (MSC) were used as supports of Ni based catalysts for dry reforming of methane (DRM) reaction. The effects of preparation method and precipitant on the catalysts are investigated. The physical and chemical properties are discussed based on the H2-TPR, FTIR, XRD, TEM, H2-TPD and N2 adsorption/desorption characterization. It is found that the preparation method and choice of precipitants affect the catalysts significantly in terms of the properties and catalytic performance in DRM reaction. In detail, the catalysts prepared by the precipitation method show more highly dispersed Ni particles and further better catalytic activity than the impregnated catalyst. That is attributed to the forming Ni3Si2O5(OH)4 nanoflakes in the catalyst precursors with the existence of alkaline precipitants. And this Ni3Si2O5(OH)4 species bind the support more tightly than NiO in the impregnated Ni/MSC catalyst. Moreover, the choice of precipitants also influences the form of Ni3Si2O5(OH)4 species in the catalysts. Specially, the strong electrolytic capacity of NaOH gives the most Ni3Si2O5(OH)4 nanoflakes formed in Ni-MSC-1 catalyst, which results in the most highly Ni dispersity and further highest catalytic activity. Besides, the strong interaction between the Ni3Si2O5(OH)4 species and support are also advantageous to the resist sintering and formation of carbon deposition, that is related to the good catalytic stability of catalysts.  相似文献   

10.
Dry reforming of methane (DRM) is known to produce synthesis gas through the utilization of greenhouse gases to ensure environmentally benign process and rational use of natural resources. Many catalyst formulations operating at “ideal” conditions were proposed for DRM reaction, including those based on noble (Pt, Rh) and non-noble (Ni, Co) metals supported on various oxides. This review is focused on the recent advances in lanthanoid-containing Ni-based DRM catalysts. We consider the performance of Ni-based catalysts supported on LnOx oxides (La2O3, CeO2, etc.), promotion of the said composites by noble or transition metals, organization of pristine and promoted Ni–LnOx interfaces on the surfaces of various supports, including ordered materials. Analysis of features of the high-performance DRM catalysts is provided. The outlook of the existing challenges and opportunities in the rational design of a new generation of lanthanoid-containing Ni-based catalysts for dry reforming of methane and other hydrocarbons is provided.  相似文献   

11.
H2 was produced from aluminum/water reaction and reacted with CO2 over Ni and Rh based catalysts to optimize the process conditions for CO2 methanation at moderate temperature. Monometallic catalysts were prepared by incorporating Ni and Rh using nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and rhodium(III) chloride trihydrate (RhCl3·3H2O)as a precursor chemical. The preliminary study of the catalysts revealed higher activity and CH4 selectivity for Rh based catalyst compared to that of Ni based catalyst. Further, Rh based catalyst was investigated using response surface methodology (RSM) involving central composite design. The quadratic model was employed to correlate the effects of variable parameters including methanation temperature, %humidity, and catalyst weight with the %CO2 conversion, %CH4 selectivity, and CH4 production capacity. Analysis of variance revealed that methanation temperature and humidity play an important role in CO2 methanation. Higher response values of CO2 conversion (54.4%), CH4 selectivity (73.5%) and CH4 production capacity (8.4 μmol g?1 min?1) were noted at optimum conditions of 206.7°C of methanation temperature, 12.5% humidity and 100 mg of the catalyst. The results demonstrated the ability of Rh catalyst supported on palm shell activated carbon (PSAC) for CO2 methanation at low temperature and atmospheric pressure.  相似文献   

12.
A series of Ni/ZrO2 catalysts was prepared by the impregnation method with modification of the morphology of ZrO2 support as well as the impregnation procedure and tested for CO2 methanation. The catalysts supported on the ZrO2 nanosheets displayed superior catalytic performance as compared with that on ZrO2 nanoparticles, which could be mainly attributed to the abundant oxygen vacancies promoting the adsorption and dissociation of CO2 molecules as well as the high dispersion of Ni species. With the introduction of ethylenediamine (En) in the impregnation procedure, the resulting Ni-15En/ZrO2-1.5 catalyst showed the optimal activity with CO2 conversion of 86% significantly higher than Ni/ZrO2-0 of 44% and Ni/ZrO2-1.5 of 79% at 0.5 MPa and 300 °C. The excellent performance was attributed to increased moderately basic sites for CO2 adsorption in ZrO2 nanosheets, as well as the enhanced dispersion of nickel caused by the complexation of Ni ions with En, which inhibited the aggregation of nickel particles in the subsequent thermal treatments. In conclusion, the synergistic effects of the morphology of ZrO2 nanosheets as well as the chelating behavior of En contributed to the enhanced performance of Ni-15En/ZrO2-1.5 in the CO2 methanation reaction. The strategy shows good prospects for controlling the size of active metals, especially those that were dispersed on the surface of the two-dimensional (2D) metal oxide materials.  相似文献   

13.
The highly dispersed mNi/xLa−Si catalysts with varied weight percentages of Ni and La were synthesized via one-pot sol-gel process and subsequently applied to combined carbon dioxide and steam reforming of methane (CSDRM) for syngas production. The addition of La improved the catalytic activity and stability as well as the coke resistance of the mNi/xLa−Si catalysts. The effects of preparation routes, Ni contents and CO2/steam (C/S) ratios on the performances of the Ni/LaSi catalysts were studied in detail for the CSDRM. The 17.5Ni/3.0LaSi catalyst synthesized with the assistance of poly (ethylene glycol) and ethylene glycol exhibited the most excellent catalytic activity, stability and coke resistance. In addition, the H2/CO ratios in the product gas could be tuned by changing the C/S ratios in the feed. When the C/S ratio was 0.5, the H2/CO ratio of about 2 was achieved for the 17.5Ni/3.0LaSi catalyst.  相似文献   

14.
The idea of hydrogen production through dry reforming of methane (DRM) is simply outstanding as it is related to decrease the concentration of green-house gases. Yttria-Zirconia supported Nickel catalyst has thermal stability and mobile lattice oxygen but poor oxygen replenishment by CO2 to the reduced sites. Promotional addition of ceria adds catalytic merit as quick availability of lattice oxygen, good oxygen replenishment by CO2 to the reduced sites, and reducing bandgap. Herein, 1-3 wt% Ce promoted yttria-zirconia supported Ni catalyst is investigated and characterized by X-ray Diffraction (XRD), Raman, Infrared and UV–vis spectroscopy, CH4-temperature programmed surface reaction (CH4-TPSR) and cyclic H2TPR-CO2TPD-H2TPR experiment. The addition of 2 wt% ceria causes lower crystallinity of metallic nickel (than 1 wt% ceria) which facilitates wide range of CH4 decomposition sites (confirmed by CH4-TPSR). It additionally cultivates the mixed cerium zirconium oxide for resultant mixed potential and additional oxygen mobility. It ensures about 79% H2 yield.  相似文献   

15.
Ni-containing mixed oxides derived from layered double hydroxides with various amounts of yttrium were synthesized by a co-precipitation method at constant pH and then obtained by thermal decomposition. The characterization techniques of XRD, elemental analysis, low-temperature N2 sorption, H2-TPR, CO2-TPD, TGA and TPO were used on the studied catalysts. The catalytic activity of the catalysts was evaluated in the CO2 methanation reaction performed at atmospheric pressure. The obtained results confirmed the formation of nano-sized mixed oxides after the thermal decomposition of hydrotalcites. The introduction of yttrium to Ni/Mg/Al layered double hydroxides led to a stronger interaction between nickel species and the matrix support and decreased nickel particle size as compared to the yttrium-free catalyst. The modification with Y (0.4 and 2 wt%) had a positive effect on the catalytic performance in the moderate temperature region (250–300 °C), with CO2 conversion increasing from 16% for MO-0Y to 81% and 40% for MO-0.4Y and MO-2.0Y at 250 °C, respectively. The improved activity may be correlated with the increase of percentage of medium-strength basic sites, the stronger metal-support interaction, as well as decreased crystallite size of metallic nickel. High selectivity towards methane of 99% formation at 250 °C was registered for all the catalysts.  相似文献   

16.
The low quality municipal solid wastes (MSW) derived char has a potential to be used as a methanation catalyst to achieve low-cost methanation of the syngas derived from MSW, and its performance with varying reaction parameters should be explored for better application. In this study, a MSW char supported Ni-based catalyst (Ni-MSWC) was prepared by impregnation; the influences of CO2 and CH4 impurities in the raw syngas on methanation and the feasibility of conducting methanation in a low-pressure condition were investigated, then the catalyst's response to the changing parameters was identified. The results showed that the presence of low concentration CO2 in the H2-rich syngas is favorable to the gasification of the char carrier and activates Ni-MSWC catalyst. However, it also promotes F–T synthesis reaction and leads to a decrease in the methane yield (YCH4). The decrease in reaction pressure causes a decrease in YCH4 and results in coke formation; but inhibits F–T synthesis reaction and increases methane selectivity (SCH4). A higher reaction pressure increases system complexity and accelerates char carrier consumption. Moreover, presence of methane by 2.8% (vol.) promotes the methanation of CO2 through the methane dry reforming reaction, but it inevitably causes coke formation and affects the catalyst's stability. Based on YCH4 and Ni-MSWC's responses, CO:CO2 ≥ 3:2 and reaction pressure of 1 MPa (gauge pressure) are recommended, which help to inhibit the side reactions and maintain a high YCH4 (>95%).  相似文献   

17.
Nanocrystalline Ni/CeO2 catalysts with various loadings of Ni (10, 15, 20, and 25%) were synthesised by a facile solvent deficient precipitation method for methane autothermal reforming process. The characterisation techniques such as XRD, BET, TPH, H2-TPR were carried out on fresh and spent samples to investigate the catalytic properties of the Ni/CeO2. On the basis of characterisation results, the 20% Ni/CeO2 performs the best activity among the catalysts with different Ni contents. The optimal reaction conditions for autothermal methane reforming has been investigated by evaluating the effect of reaction parameters including the reactivity temperature, the gas hourly space velocity (GHSV) and H2O/CH4 (S/C) and O2/CH4 (O/C) molar ratios. The stability of 20 wt% Ni/CeO2 catalyst at 700 °C is examined for 20 h on-stream reaction. It reveals that the methane conversion starts a graduate decrease trend from the second 10 h, which is found to be because of the sintering of Ni nanoparticles by TPH and BET analysis.  相似文献   

18.
Samples containing from 1 to 33 wt.% of NiO on silica and alumina doped with silica (1 and 20 wt.% silica in the support) have been prepared and characterized by BET, XRD, FT-IR, UV–vis–NIR, FE-SEM, EDXS, and TPR techniques. Catalysts have been pre-reduced in situ before catalytic experiments and data have been compared with Ni/Al2O3 reference sample. Characterization results showed that SiO2 support has a low Ni dispersion ability mainly producing segregated NiO particles and a small amount of dispersed Ni2+ in exchange sites. Instead, for the Si-doped alumina a “surface spinel monolayer phase” is formed by increasing Ni loading and, only when the support surface is completely covered by this layer, NiO is formed. Moreover, H2-TPR results indicated that NiO particles are more easily reduced compared to Ni species. Low loading Ni/SiO2 catalysts show high selectivity and moderate activity for RWGS (reverse Water Gas Shift) reaction, likely mainly due to nickel species dispersed in silica exchange sites, as evidenced by visible spectroscopy. High loading Ni/SiO2 catalysts show both methanation and RWGS but evident short-term deactivation for methanation, attributed to large, segregated Ni metal particles, covered by a carbon veil. Ni on alumina -rich carriers, where nickel disperses forming a surface spinel phase, show high activity and selectivity for methanation, and short-term catalyst stability as well. This activity is attributed to small nickel clusters or metal particles interacting with alumina, formed upon reaction. The addition of SiO2 in Al2O3 support decreases the activity of Ni catalysts in CO2 methanation, because it reduces the ability of the support to disperse nickel in form of the surface spinel phase, thus reducing the amount of Ni clusters in the reduced catalysts.  相似文献   

19.
A series of mixed oxides obtained by thermal decomposition of hydrotalcites containing different amounts of Ni and constant MII+/MIII+ molar ratio were characterized by XRD, XANES, XES, H2-TPR, CO2-TPD, elemental analysis and low temperature nitrogen sorption technique. The results confirm the formation of periclase-like structured materials after thermal treatment, with nickel present as NiO in octahedral coordination environment. As proven by H2-TPR with increasing Ni content the interaction between Ni and hydrotalcite matrix weakens, which has a positive influence on the catalytic performance. The catalysts containing different amounts of nickel (10.3, 16.2, 27.3, 36.8, 42.5 wt.%) showed at 300 °C a very good catalytic performance in carbon dioxide methanation, with CO2 conversion of 36 (Ni10.3)–82% (Ni42.5) and CH4 selectivity of 98–99%.  相似文献   

20.
In this work, a series of NiMgAl oxides (NMA) derived from hydrotalcite catalysts were prepared via co-precipitation (NMA-CP), urea hydrolysis (NMA-UH), and impregnation (NMA-IMP) techniques, then subsequently tested for CO2 methanation. The well-defined synthesis of derived hydrotalcite mixed oxides was confirmed by physicochemical characterizations including XRD, SEM, BET, H2-TPR and CO2-TPD. The preparation methods showed a substantial influence on the structure and thermal activity of catalysts. Indeed, the NMA-UH catalyst demonstrated a high and stable catalytic activity in terms of CO2 conversion and CH4 selectivity, with ca. 82.3% and 99.8% (GHSV = 12,000 h?1, H2/CO2 = 4/1) respectively, at 300 °C. This is mainly due to its large specific surface area, small Ni-particle size, and higher basicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号