首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Unphosphorylated gizzard myosin and heavy meromyosin were cross linked in the 10 S and 9 S states, respectively, by the cleavable cross linker, 3,3'-dithiobis (sulfosuccinimidyl-propionate) (DTSSP). The 10 S to 6 S transition for cross-linked 10 S myosin appeared to cease; myosin appeared to remain in the 10 S state from measurements of viscosity and Mg(2+)-ATPase activity. The loss of the transition for cross-linked 9 S heavy meromyosin (HMM) was also indicated by Mg(2+)-ATPase activity. The cross links were cleaved by incubation with 50 mM dithiothreitol. From direct binding measurements, the estimated Kd's of actin to cross-linked and control heavy meromyosin were 167 and 16 microM, respectively. The binding affinity of cross-linked HMM to actin was restored to the control level by dithiothreitol.  相似文献   

2.
3.
Since mica is a substitute for glass in the in vitro actin motility assay, I examined the structure of heavy meromyosin (HMM) crossbridges supporting actin filaments by quick-freeze deep-etch replica electron microscopy. This method was capable of resolving the inter-domain cleft of the monomeric actin molecule. HMM heads that are not bound to actin, when observed by this technique, were straight and elongated in the absence of ATP but strongly kinked upon addition of ATP or ADP.inorganic vanadate to produce the putative long-lived analog of HMM-ADP.inorganic phosphate. The low-magnification image of the ATP-containing acto-HMM preparation showed features characteristic of sliding actin filaments on glass coverslips. At high magnification, all the HMM molecules were found attached to actin by one head with the majority projecting perpendicular to the filament axis, whereas in the absence of ATP, HMM exhibited two-head binding with a preponderance of molecules tilted at 45 degrees. Detailed examination of the shape of HMM heads involved in sliding showed a rounded, and flat appearance of the tip and comparatively thin neck portion as if the heads grasp actin filament, in contrast to rigor crossbridges which have a pear-shaped configuration with more gradual taper. Such configurations of HMM heads were essentially the same as I observed previously on acto-myosin subfragment-1 (S1) by the same technique, except for the presence of an additional neck portion of HMM which makes interpretaion of the images easier. Interestingly, under actively sliding conditions, very few heads were tilted in the rigor configuration. At first glance, the addition of ADP to the rigor-complex gave images rather like those obtained with ATP, but they turned out to be different. The contribution of the structural change of crossbridges to the force development is discussed.  相似文献   

4.
The single-photoelectron counting technique was used for measurement of the fluorescence decay kinetics of N-(1-pyrene)maleimide conjugated to the fast reactive cysteine of actin. The fluorescence decay curve of the labelled G-actin could not be described by a single-exponential function but by a double-exponential function. Polymerization of actin was accompanied by significant changes in the decay parameters of the two decay components. We found that the ionic strength, which plays an important role in the G-F equilibrium, scarcely affected these parameters provided that the labelled actin exists in the monomeric state. Thus it is suggested that the conformational change of actin protomer occurs at the time of association. When heavy meromyosin was added to the labelled F-actin, the decay parameter changed monotonically on increasing saturation of binding of heavy meromyosin and it levelled-off around a ratio of heavy meromyosin:actin of 0.5 mol/mol. Decay parameters under the influence of heavy meromyosin had values intermediate between those observed for the labelled G-actin and for the labelled F-actin. Therefore, it is suggested that binding of heavy meromyosin to F-actin alters the conformation of actin protomer towards that similar to G-actin.  相似文献   

5.
The thermal unfolding of turkey gizzard smooth muscle myosin subfragment 1 (S1) and heavy meromyosin (HMM) in the absence of added nucleotides, in the presence of ADP, and in S1 or HMM ternary complexes with ADP and Pi analogs, orthovanadate (Vi), beryllium fluoride (BeFx), or aluminum fluoride (AlF4-), have been studied by differential scanning calorimetry (DSC). It has been shown that the formation of these ternary complexes causes significant structural changes in S1 or in the heads of HMM which are reflected in a pronounced increase of the protein thermal stability. The effect of BeFx was less distinct than that of AlF4- or Vi. Phosphorylation of regulatory light chains (RLC) in S1 or in HMM had practically no influence on these effects. In general, the changes caused by various Pi analogs in smooth muscle S1 or HMM were similar to those observed earlier with skeletal muscle S1 devoid of RLC. It is concluded that RLC and their phosphorylation do not significantly affect the character of structural changes induced in motor domains of the HMM heads by the formation of ternary complexes HMM--ADP--Vi, HMM--ADP--AlF4-, and HMM--ADP--BeFx--stable analogs of the intermediate states of the HMM ATPase reaction, HMM.ADP.Pi and HMM. ATP.  相似文献   

6.
Pisatin is the major phytoalexin produced by pea upon microbial infection. The enzyme that catalyzes the terminal step in the pisatin biosynthetic pathway is (+)6a-hydroxymaackiain 3-O-methyltransferase (HMM). We report here the isolation and characterization of two HMM cDNA clones (pHMM1 and pHMM2) made from RNA obtained from Nectria haematococca-infected pea tissue. The two clones were confirmed to encode HMM activity by heterologous expression in Escherichia coli. The substrate specificity of the methyltransferases in E. coli was similar to the activity detected in CuCl2-treated pea tissue. Nucleotide sequence analysis of Hmm1 and Hmm2 revealed an open reading frame of 1080 bp and 360 amino acid residues which would encode 40.36 kda and 40.41 kDa polypeptides, respectively. The deduced amino acid sequence of HMM1 has 95.8% identity to HMM2, 40.6% identity to Zrp4, a putative O-methyltransferase (OMT) in maize root, and 39.1% to pBH72-F1, a putative OMT induced in barley by fungal pathogens or UV light. Comparison of the deduced amino acid sequences of the cDNA clones to OMTs from other higher plants identified the binding sites of S-adenosylmethionine (AdoMet). Southern blot analysis showed two closely linked genes with strong homology to Hmm in the pea genome.  相似文献   

7.
The effects resulting from the removal of the N-terminus of heavy meromyosin (HMM) A1 light chain by papain digestion are investigated. The fluorometry of TRITC-phalloidin labelled actin in ghost fibers is used as a tool for sensing conformational changes of rigor complex of phosphorylated and dephosphorylated HMM with actin filament. The experiments were performed both under conditions assuring saturation of RLC with magnesium cation (4 mM EGTA) or calcium cation (0.1 mM CaCl2), and in constant presence of 1 mM magnesium chloride. HMM native and with A1 shortened from the N-terminus is used. As it was observed previously rigor complex of actin filament and native HMM shows sensitivity to the kind of cation saturating RLC and to the phosphorylation status of RLC. In particular, the sin2 theta parameter of actin bound rhodamine-phalloidin fluorescence polarization representing roughly the flexibility of actin filament HMM complex changes significantly with the changes of RLC phosphorylation and cation saturation. Removal of the N-terminus of A1 reduces this sensitivity to cation and phosphorylation both in the case of dephosphorylated and phosphorylated HMM. Our results suggest that the N-terminus of A1 plays significant role in the rigor interaction of myosin heads with actin and is involved in modulatory function of RLC in this interaction.  相似文献   

8.
The atomic model of the F-actin-myosin subfragment 1 complex (acto-S-1) from skeletal muscle suggests that the transition of the complex from a weakly to a strongly binding state, generating mechanical force during the contractile cycle, may involve the attachment of the upper 50-kDa subdomain of myosin subfragment 1 (S-1) to the interface between subdomains 1 and 3 of actin. For the human cardiac myosin, this putative interaction would take place at the ordered loop including Arg403 of the beta-heavy chain sequence, a residue whose mutation into Gln is known to elicit a severe hypertrophic cardiomyopathy caused by a decrease of the rate of the actomyosin ATPase activity. Moreover, in several nonmuscle myosins the replacement of a Glu residue within the homolog loop by Ser or Thr also results in the reduction of the actomyosin ATPase rate that is alleviated by phosphorylation. As an approach to the characterization of the unknown interaction properties of F-actin with this particular S-1 loop region, we have synthesized four 17-residue peptides corresponding to the sequence Gly398-Gly414 of the human beta-cardiac myosin. Three peptides included Arg403 (GG17) or Gln403 (GG17Q) or Ser409 (GG17S) and the fourth peptide (GG17sc) was a scrambled version of the normal GG17 sequence. Using fluorescence polarization, cosedimentation analyses and photocross-linking, we show that the three former peptides, but not the scrambled sequence, directly associate in solution to F-actin, at a nearly physiological ionic strength, with almost identical affinities (Kd approximately 40 microM). The binding strength of the F-actin-GG17 peptide complex was increased fivefold (Kd = 8 microM) in the presence of subsaturating concentrations of added skeletal S-1 relative to actin, without apparent competition between the peptide and S-1. Each of the three actin-binding peptides inhibited the steady-state actin-activated MgATPase of skeletal S-1 by specifically decreasing about twofold the Vmax of the reaction without changing the actin affinity for the S-1-ATP intermediate. Cosedimentation assays indicated the binding of about 0.65 mol peptide/mol actin under conditions inducing 70% inhibition. Collectively, the data point to a specific and stoichiometric interaction of the peptides with F-actin that uncouples its binding to S-1 from ATP hydrolysis, probably by interfering with the proper attachment of the S-1 loop segment to the interdomain connection of actin.  相似文献   

9.
The mts1 gene codes for a 9 kDa protein belonging to the S100 subfamily of Ca2+-binding proteins and is known to play a role in metastasis. Its role in metastasis may be through cellular locomotion, as transfection of mts1 into mouse mammary adenocarcinoma cells increases cellular motility in modified Boyden chemotaxis chambers. The Mts1 protein interacts with nonmuscle myosin II in the presence of Ca2+ with an affinity of approximately 7.9 x 10(4) M-1 and an approximate stoichiometry of 3 mol of Mts1/mol of myosin heavy chain. No interaction was found with myosin I or myosin V. The binding site of Mts1 on myosin is in the rod region, particularly to the light meromyosin portion of the rod. To understand the mechanism by which Mts1 alters cellular motility, we examined its effect on myosin structure and activity. Cosedimentation analysis and electron microscopy suggest that Mts1 destabilizes myosin filaments. In the presence of Ca2+, Mts1 inhibits the actin-activated MgATPase activity of myosin in vitro. The data demonstrate an effect of Mts1 on both myosin structure and function, and suggest a route through which Mts1 affects motility as well as metastasis.  相似文献   

10.
Chimeric substitution of the weak actin-binding loop (ABL) from chicken skeletal muscle myosin for that of gizzard smooth muscle heavy meromyosin (HMM) causes activation of the dephosphorylated mutant (SABL HMM; Rovner, A. S., Freyzon, Y., and Trybus, K. M. (1995) J. Biol. Chem. 270, 30260-30263). The present study determined whether this loss of regulation is due to the greater positive charge density (5 versus 3 clustered lysine residues) or lesser length (14 versus 26 residues) of the mutant ABL. Charge augmentation had little effect on regulation of expressed mutants, but elimination of the 12 N-terminal amino acids from the wild-type ABL significantly increased actin-activated ATPase activity of the dephosphorylated relative to the phosphorylated molecule while conferring the ability to move actin filaments in vitro on the former. Addition of the same 12 residues to the SABL mutant increased the ratio of phosphorylated to dephosphorylated ATPase activity while imparting wild type-like regulation to motility. However, full actin activation of dephosphorylated ATPase activity required both the shorter length and greater positive charge density found in the SABL loop. These results demonstrate that, compared with skeletal, both the greater length and lesser positive charge density of the smooth muscle myosin ABL are required for proper phosphorylation-mediated regulation of the molecule.  相似文献   

11.
1. Phosphatidylinositol 3-kinase (PI3K) appears to have a crucial role in cellular proliferation induced by platelet-derived growth factor (PDGF). However, the mode of activation of the enzyme has been unclear so far. In the present study, we investigated the effects of a cholesterol lowering drug on [3H]-thymidine ([3H]-TdR) incorporation and PI3K activity in cultured vascular smooth muscle cells (VSMC) stimulated with PDGF. 2. PDGF stimulated both [3H]-TdR incorporation and PI3K activity immunoprecipitated with antiphosphotyrosine antibody in a dose dependent manner (ED50 was 4 ng/mL for [3H]-TdR uptake and 3 ng/mL for PI3K activity). Lovastatin inhibited serum-stimulated [3H]-TdR incorporation dose dependently. PI3K activity induced by PDGF was also inhibited in a dose dependent manner; however, its activity was 61% at 10(-6) mol/L, 72% at 10(-5) mol/L and 8% at 10(-4) mol/L of the control value. 3. These inhibitory effects of lovastatin were completely abolished by adding 1 mmol/L mevalonic acid (MVA), suggesting that MVA metabolites had some important role on the PI3K activation and cellular proliferation. 4. Fluoromevalonate (Fmev), a competitive inhibitor of mevalonate diphosphate (MVA-PP) decarboxylase, inhibited [3H]-TdR incorporation at concentrations more than 10(-6) mol/L. Moreover, marked inhibitory effect was observed at concentrations of 10(-7) and 10(-8) mol/L (76% of control). PI3K activity was also reduced by 10(-3) mol/L Fmev (0.2% of control). However, in contrast to [3H]-TdR uptake, there was no inhibitory effect detected at concentrations up to 10(-4) mol/L. 5. These results suggest that PDGF-stimulated PI3K activity as well as cellular proliferation was modified by protein isoprenylation.  相似文献   

12.
Light meromyosin (LMM 77), the C-terminal proteolytic peptide from myosin rod, is a 900 A coiled-coil that contains two pairs of tryptophan residues in d-positions of the heptad repeat (abcdefg)n. Previous studies showed that LMM 77 unfolded in two transitions and suggested that both Trp pairs were located in the least stable unfolding domain. Here, the thermal and denaturant unfolding properties of LMM 59, a recombinant N-terminal truncated LMM, containing only one of the Trp pairs, was compared to LMM 77. LMM 59 unfolded in two transitions with similar midpoints to the two transitions of LMM 77. However, only the second transition of LMM 59 affected the Trp fluorescence, indicating that the two pairs of Trp residues in LMM 77 are in different unfolding domains. Disulfide-crosslinked LMM 59 verified this assignment. Solute-quenching studies showed that the accessibility of the Trp in LMM 59 decreased only by 56% on forming filaments. Electron micrographs indicated that all of LMM 59 is located within the core of a bipolar tactoid with the Trp-containing region the most accessible to negative strain, in agreement with the solute-quenching studies. This suggests that part of the core of the myosin thick filament is appreciably exposed to solvent.  相似文献   

13.
The effect of Ca2+ on conformational changes in rhodamine-phalloidin-labeled F-actin induced by binding of smooth muscle heavy meromyosin (HMM) with either phosphorylated or dephosphorylated regulatory light chains (LC20) was studied by polarized fluorimetry. LC20 phosphorylation caused alterations in the F-actin structure typical of the force-producing (strong-binding) state, while dephosphorylation of the chains led to alterations typical of the formation of non-force-producing (weak-binding) state of the actomyosin complex. The presence of Ca2+ enhanced the effect of LC20 phosphorylation and weakened the effect of LC20 dephosphorylation. These data suggest that Ca2+ modulates actin-myosin interaction in smooth muscle by promoting formation of the strong-binding state.  相似文献   

14.
A fluorescent reagent, o-phthalaldehyde (OPA), competitively inhibited porcine pancreatic alpha-amylase (PPA) with Ki values of 0.7-0.9 mM, while alpha-amylase from Bacillus subtilis (BS) was uncompetitively inhibited, with Ki values of 5.8-7.6 mM. In both cases, OPA gave a time-dependent irreversible inactivation, where the amylase activity was lost faster than the maltosidase activity. Zymograms of the course of OPA modification showed that PPA was converted into at least six, faster moving components and BS gave two components. The OPA modification was retarded by the addition of the substrate analog, cyclodextrins, and the OPA modified enzymes decreased in affinity for the substrate soluble starch. Stoichiometric measurement showed that both PPA and BS was inactivated by the incorporation of 1 mol of OPA per mol of enzyme. The role of OPA modification of alpha-amylases was discussed in relation to the regulation of catalytic activity of enzymes.  相似文献   

15.
CaSki and HeLa cell lines, isolated from human uterine carcinomas and containing integrated human papillomavirus (HPV) DNA type 16 and 18, respectively were used to evaluate the sensitivity of HPV-DNA detection on suspended cells by fluorescent in situ hybridization using flow cytometry and on corresponding cell deposits using confocal laser scanning microscopy (CLSM). HPV DNAs were detected in cell suspensions with biotinylated DNA probes and revealed with a three-step technique: a rabbit antibiotin antibody, a biotinylated goat anti-rabbit antibody and a streptavidin-fluorescein isothiocyanate complex. By flow cytometry, HPV DNA was detectable only in CaSki cells which contained about 600 copies of HPV DNA per cell. In HeLa cells, with only 20-50 copies of HPV DNA, flow cytometry could not detect HPV DNA, whereas CLSM permitted visualization of fluorescent labelling of HPV DNA hybrids. Furthermore, CLSM showed good preservation of cellular morphology and the nucleus was clearly recognizable after fluorescent in situ hybridization and counterstaining with propidium iodide. Moreover, this examination confirmed that the fluorescent foci were specifically confined to the cell nuclei.  相似文献   

16.
The mechanical behavior of skinned rabbit psoas muscle fiber contractions and in vitro motility of F-actin (Vf) have been examined using ATP, CTP, UTP, or their 2-deoxy forms (collectively designated as nucleotide triphosphates or NTPs) as contractile substrates. Measurements of actin-activated heavy meromyosin (HMM) NTPase, the rates of NTP binding to myosin and actomyosin, NTP-mediated acto-HMM dissociation, and NTP hydrolysis by acto-HMM were made for comparison to the mechanical results. The data suggest a very similar mechanism of acto-HMM NTP hydrolysis. Whereas all NTPs studied support force production and stiffness that vary by a factor 2 or less, the unloaded shortening velocity (Vu) of muscle fibers varies by almost 10-fold. 2-Deoxy ATP (dATP) was unique in that Vu was 30% greater than with ATP. Parallel behavior was observed between Vf and the steady-state maximum actin-activated HMM ATPase rate. Further comparisons suggest that the variation in force correlates with the rate and equilibrium constant for NTP cleavage; the variations in Vu or Vf are related to the rate of cross-bridge dissociation caused by NTP binding or to the rate(s) of product release.  相似文献   

17.
Calponin is a 33-kDa smooth muscle-specific protein that has been suggested to play a role in muscle contractility. It has previously been shown to interact with actin, tropomyosin, and calmodulin. More recently we showed that calponin also interacts with myosin (Szymanski, P. T., and Tao, T. (1993) FEBS Lett. 331, 256-259). In the present study we used a combination of co-sedimentation and fluorescence assays to localize the regions in myosin and calponin that are involved in the interaction between these two proteins. We found that recombinant chicken gizzard alpha-calponin co-sediments with myosin rod and, to a lesser extent, with light meromyosin. Fluorescently labeled recombinant calponin shows interaction with heavy meromyosin and myosin subfragment 2 but not subfragment 1. A fragment comprising residues 7-182 and a synthetic peptide spanning residues 146-176 of calponin co-sediment with myosin, but fragments comprising residues 7-144 and 183-292 do not. Our results indicate that there are calponin binding sites in the subfragment 2 and light meromyosin regions of myosin, and that the region comprising residues 145-182 of calponin mediates its interaction with myosin.  相似文献   

18.
Pig heart NAD-dependent isocitrate dehydrogenase is inactivated by adenosine 5'-O-[S-(4-bromo-2,3-dioxobutyl)thiophosphate] (AMPS-BDB) with incorporation of 1.78 mol of reagent/mol of average subunit. Complete protection against the inactivation is provided by 20 mM isocitrate + 1 mM Mn2+, and the incorporation is decreased to about 1.3 mol of reagent/mol of average subunit. The addition of NAD, NADH, or Mn2+ alone has little effect on the functional changes produced by AMPS-BDB, while ADP gives only partial protection against the inactivation. The ability of ADP to decrease the Km for isocitrate is not affected by the AMPS-BDB modification of the enzyme. These results indicate that the isocitrate substrate site is the target of AMPS-BDB. The enzyme has three types of subunits with a tetramer having the composition alpha2 beta gamma. Here, [2-3H]AMPS-BDB-modified subunits are separated by HPLC on a C4 reverse-phase column, after the treatment of the modified enzyme with 4 M urea. The predominant radioactivity is distributed in alpha and gamma subunits. However, evidence based on recombination of subunits from modified and unmodified enzymes indicates that only labeling of the alpha subunit is responsible for inactivation by AMPS-BDB. Subsequently, the separated modified subunits were chemically cleaved by CNBr and then purified by HPLC using a C18 column. The labeled peptides were further digested by pepsin, purified by HPLC, and sequenced. These results indicate that R88 and R98 from the alpha subunit are the major targets of AMPS-BDB which cause inactivation and that these are at or near the isocitrate site of the enzyme.  相似文献   

19.
Cadherin cell-cell adhesion molecules form membrane-spanning molecular complexes that couple homophilic binding by the cadherin ectodomain to the actin cytoskeleton. A fundamental issue in cadherin biology is how this complex converts the weak intrinsic binding activity of the ectodomain into strong adhesion. Recently we demonstrated that cellular cadherins cluster in a ligand-dependent fashion when cells attached to substrata coated with the adhesive ectodomain of Xenopus C-cadherin (CEC1-5). Moreover, forced clustering of the ectodomain alone significantly strengthened adhesiveness (Yap, A.S., W.M. Brieher, M. Pruschy, and B.M. Gumbiner. Curr. Biol. 7:308-315). In this study we sought to identify the determinants of the cadherin cytoplasmic tail responsible for clustering activity. A deletion mutant of C-cadherin (CT669) that retained the juxtamembrane 94-amino acid region of the cytoplasmic tail, but not the beta-catenin-binding domain, clustered upon attachment to substrata coated with CEC1-5. Like wild-type C-cadherin, this clustering was ligand dependent. In contrast, mutant molecules lacking either the complete cytoplasmic tail or just the juxtamembrane region did not cluster. The juxtamembrane region was itself sufficient to induce clustering when fused to a heterologous membrane-anchored protein, albeit in a ligand-independent fashion. The CT669 cadherin mutant also displayed significant adhesive activity when tested in laminar flow detachment assays and aggregation assays. Purification of proteins binding to the juxtamembrane region revealed that the major associated protein is p120(ctn). These findings identify the juxtamembrane region of the cadherin cytoplasmic tail as a functionally active region supporting cadherin clustering and adhesive strength and raise the possibility that p120(ctn) is involved in clustering and cell adhesion.  相似文献   

20.
3beta-(Iodoacetoxy)dehydroisoandrosterone (3beta-IDA), an analogue of the electrophilic substrate, Delta5-androstene-3,17-dione, as well as an analogue of several other steroid inhibitors of glutathione S-transferase, was tested as an affinity label of rat liver glutathione S-transferase, isozyme 1-1. A time-dependent loss of enzyme activity is observed upon incubation of 3beta-IDA with the enzyme. The rate of enzyme inactivation exhibits a nonlinear dependence on 3beta-IDA concentration, yielding an apparent Ki of 21 microM. Upon complete inactivation of the enzyme, a reagent incorporation of approximately 1 mol/mol of enzyme subunit or 2 mol/mol of enzyme dimer is observed. Protection against inactivation and incorporation is afforded by alkyl glutathione derivatives and nonsubstrate steroid ligands such as 17beta-estradiol-3,17-disulfate but, surprisingly, not by Delta5-androstene-3,17-dione or any other electrophilic substrate analogues tested. These results suggest that the site of reaction is within the nonsubstrate steroid binding site of the enzyme, which is distinguishable from the electrophilic substrate binding site, near the active site of the enzyme. Two cysteine residues, Cys17 and Cys111, are modified in nearly equal amounts, despite an average reagent incorporation of 1 mol/mol enzyme subunit. Isolation of enzyme subunits indicates the presence of unmodified, singly labeled, and doubly labeled subunits, consistent with mutually exclusive modification of cysteine residues across enzyme subunits; i.e., modification of Cys111 on subunit A prevents modification of Cys111 on subunit B and similarly for Cys17. Molecular modeling analysis suggests that Cys17 and Cys111 are located in the nonsubstrate steroid binding site, within the cleft between the subunits of the dimeric enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号