首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
An aluminium alloy and its composite with dispersed SiC particles made by liquid metallurgy route were extruded under optimized conditions.The properties were characterized in terms of microstructure,hardness and sliding wear behaviour and then compared between the extruded and cast alloys and composites,in order to understand the benefits of composite and extrusion on the alloy.It was observed that composites drastically increased the hardness and the extruded composites further increased this value.The advantage of composites was realized in sliding wear tests.  相似文献   

2.
The changes of tempering microstructure and properties of Fe-Cr-V-Ni-Mn-C cast alloys with martensite matrix and much retained austenite are studied. The results showed that when tempering at 200℃ the amount of retained austenite in the alloys is so much that is nearly to as-cast, and a lot of retained austenite decomposes when tempering at 350℃ and the retained austenite decomposes almost until tempering at 560℃. When tempering at 600℃, the retained austenite in the alloys all decomposes. At 560℃ the hardness is highest due to secondary hardening. The effect of nickel and manganese on the microstructure and properties of Fe-Cr-V-C cast alloy were also studied. The results show that the Fe-Cr-V-C cast alloy added nickel and manganese can obtain martensite matrix and much retained austenite microstructure, and nickel can also prevent pearlite transformation. With the increasing content of nickel and manganese, the hardness of as-cast alloy will decreases gradually, so one can improve the hardness of alloy by tempering process. When the content of nickel and manganese is 1.3~1.7%, the hardness of secondary hardening is the highest (HRC64). But when the content of nickel and manganese increase continually, the hardness of secondary hardening is low slightly, and the tempering temperature of secondary hardening rises.  相似文献   

3.
The influence of various rare-earth contents on the friction and characteristics of magnesium alloy AZ91D was studied.The results show that the wear r5esistance properties of rare-earth magnesium alloys are better than those of the matrix alloy under the testing conditions.Magnesium alloys undergo transition from mild wear to severe wear.The addition of rare earths refines the structure of alloys,improves the comprehensive behaviors of the magnesium alloys,increases the stability of oxidation films on worn surfaces,enhances the loading ability of rareearth magnesium alloys,and delays the transition from mild wear to severe wear effectively.  相似文献   

4.
Microstructures and properties of titanium alloys Ti-Mo for dental use   总被引:1,自引:0,他引:1  
The microstructures and properties of a series of binary Ti-Mo alloys with molybdenum contents ranging from 5% to 20%(mass fraction) were investigated. The experimental results indicate that the crystal structure and morphology of the cast alloys are sensitive to their molybdenum contents. When the Mo content is 5%, the equiaxed a crystal grain is observed. When the Mo content is 10%, the equiaxed a crystal grain and fine needles β phase are observed. When the Mo contents are 15% and 20%, only the equiaxed β crystal grain is observed. When the Mo content is 10%, the synthetical properties of the Ti-Mo alloy are the best. The data of hardness (HV451), compression strength (1636 MPa), compression ratio (22.5%) and elastic modulus (29.8 GPa) were collected. The increase of molybdenum contents is propitious to crystal refinement and improvement of plasticity of Ti-Mo alloys. The dry wear resistance of Ti-Mo alloys against Gr 15 ball was investigated on CJS 111A ball-disk wear instrument. The results show that the dry wear resistance of Ti-Mo alloys is correlative with hardness and mechanical properties. With the ductility increasing, the dry wear resistance reduces. The friction coefficient of 10%Mo alloy is the lowest, the dry wear resistance is the best. The wear particles, wear scar depth and width of the 10%Mo alloy are smaller than that of other Ti-Mo alloys. Considering all kinds of properties of Ti-Mo alloys, 10%Mo alloy is prospective dental prostheses material.  相似文献   

5.
The fretting behaviour of the AZ91D magnesium alloy was investigated. The influence of the number of cycles, normal load (contact pressure) and the amplitude of slip on the fretting behavior of the material were focused. Fretting tests were performed under various running conditions with regard to normal load levels and slip amplitudes. The friction coefficient between the surfaces at the fretting junction was continuously recorded. The freeing damage on the magnesium specimens was studied by SEM. The resultS show that the wear volume increases with the increase of slip amplitude, and linearly increases with the increase of normal load in the mixed and gross slip regime, but the normal load has no obvious effect on the wear volume in the partial slip regime. The predominant fretting wear mechanism of magnesium alloy in the slip regime is the oxidation wear, delaminated wear and abrasive wear.  相似文献   

6.
A ZA-27 alloy reinforced with Mn-containing intermetallic compounds was prepared and its tribological behaviors were investigated.By adding,Mn,RE,Ti and B into ZA-27 alloy,the test alloy(ZMJ)was fabricated by sand casting.Microstructural analysis shows that considerable amount of Mn-containing intermetallic compounds such as Al5MnZn,Al9(MnZn)2 and Al65Mn(RE)6Ti4Zn36 are formed.Compared to ZA-27,ZMJ shows better wear resistance,lower friction coefficient and lower temperature rise of worn surface under lubricated sliding condition.ZMJ also shows the lowest steady friction coefficient under dry friction condition.The wear resistance improvement of ZMJ is mainly atributed to the high hardness and good dispersion of these Mn-containing intermetallic compounds.It is indicated that the intermetallic compounds play a dominant role in reducing the sever adhesive and abrasive wear of the ZA-27 alloy.  相似文献   

7.
Plasma carburization at two different methane-to-argon gas ratios (5:5 and 6:5) was carried out on the cast TiAI based alloy of Ti-46.5Al-2.5V-1Cr (mole fraction, %) in order to enhance its wear resistance. The results show that after carburization under both carburizing atmospheres, Ti2AlC and TiC are the main carbides in the carburized layer and the value of surface hardness reaches more than HK 822, but for the carburized TiA; treated at CH4:Ar of 5-5, the surface carbon concentration is higher and the carburized depth is slightly thicker than that of alloy carburized at CH4:Ar of 6:5. The result of the ball-on-disk test against hardening-steel counter bodies shows that the wear resistance of the TiAl based alloy carburized under two different carburizing atmospheres is improved compared with non-carburized TiAl. The tribological property is related to the carbon content, and the carburized layer obtained at CH4:Ar of 5:5 possesses a stable friction coefficient, lower volume loss or wear rate and narrow wear scar, The characteristic of the carburized layer was examined by using optical microscopy, glow discharge spectrum and micro-hardness tester.  相似文献   

8.
Semi-solid ingots of an AlSi7Mg alloy were obtained using the method of near liquidus casting. Their micro- structures exhibit the characteristics of fine, equiaxed, and non-dendrite, which are required for semi-solid forming. The in- fluences of casting temperature, heat preservation time, and cooling rate on the microstructure were also investigated. The results show that in the temperature region near liquidus the grain size becomes small with a decrease in casting temperature. Prolonging the heat preservation time makes grain crassitude at the same temperature. And increasing the cooling rate makes grain fine. The microstructure of the alloy cast with iron mould is finer than that with graphite mould.  相似文献   

9.
Laser cladding experiments were carried out on Ti-6Al-4V alloy with Ti+33%TiC(volume fraction) powders. Laser processing parameters were studied systematically to investigate the influences on the surface quality. Microstructure, microhardness and wear resistance of the clad layer were evaluated. The results show that the laser parameter has considerable influence on mierostructure and wear resistance of laser clad layer. With the optimized technical parameters, a clad layer with good surface quality and uniform microstructure was obtained. The microhardness of the clad layer HV0.2 is 1 080, and the wear rate is reduced by 57 times.  相似文献   

10.
Potassium titanate(K2O·6TiO2) whiskers-reinforced Al-12Si alloy composites were prepared by the squeeze casting technique.Wear properties of the composites were investigated by pin-on-disc tests under dry conditions.The experimental results showed that K2O·6TiO2 whiskers can effectively reinforce the matrix alloy and improve the wear resistance of the composite when the volume fraction of whiskers is low at 10 vol%.However,the composites with a high volume fraction of whiskers showed lower wear resistance than the Al-12Si alloy.The main wear mechanism of the composites is clarified as de-lamination and abrasive wear.  相似文献   

11.
A ZA-27 alloy reinforced with M n-containing intermeta llic compounds was prepared and its tribological behaviors were investigated. By adding Mn, RE, Ti and B into ZA-27 alloy, the test alloy (ZMJ) was fabricated by sand casting. Microstructural analysis shows that considerable amount of Mn-containing intermetallic compounds such as Al5MnZn, Al9(MnZn)2 and Al65 Mn(RE)6Ti4Zn36 are formed. Compared to ZA-27, ZMJ shows better wear resistance, lower friction coefficient and lower temperature rise of worn surface under lubricated sliding condition. ZMJ also shows the lowest steady friction coefficient under dry friction condition. The wear resistance improvement of ZMJ is mainly attributed to the high hardness and good dispersion of these Mn-containing intermetallic compounds. It is indicated that the intermetallic compounds play a dominant role in reducing the sever adhesive and abrasive wear of the ZA-27 alloy.  相似文献   

12.
A high-strength and wear-resistant alloyed gray iron with ausferritic microstructure on solidification directly from molten condition could be made in a Ni and Mo alloyed gray cast iron. The as-cast ausferritic cast iron was compared with two conventionally austempered gray iron with and without Ni and Mo additions. The various phase constitution and volume fractions were analyzed using optical, SEM and XRD analyses. The various aspects of the alloy chemistry and processing conditions have been correlated with the microstructure and mechanical properties obtained. The analysis showed that the Ni-Mo alloyed austempered gray iron and the directly as-cast austempered gray iron had similar phase constitutions. The strength of the direct as-cast alloy with ausferritic microstructure was higher than the others due to its higher austenite content and carbide distribution. The wear rate of the conventionally austempered Ni and Mo containing alloy and direct as-cast ausferritic alloys is 20% of the austempered gray iron without Ni and Mo with friction coefficient less than 0.4.  相似文献   

13.
Mg-11Y-2.5Zn alloy was surface-melted using a 6.0 kW continuous wave CO2 laser as a heat-generating source. X-ray diffractometer, laser optical microscopy, and Vickers hardness indentation were used to characterize the microstructure and hardness of the Mg-11Y-2.5Zn alloy. The results show that the microstructure in the laser-melted zone can be greatly refined and hardness is slightly improved. Dry sliding tests were performed on the as cast and laser surface-melted Mg-11Y-2.5Zn alloys using a pin-on-disk configuration. Coefficients of friction and wear rates were measured within a load range of 20-320 N at a sliding velocity of 0.785 m/s. Laser surface-melted Mg-11Y-2.5Zn alloy exhibited good wear resistance when compared with the as cast one under given applied load conditions, which has been explained by refining of the microstructure in the melted zone. Morphologies of worn surface on the as cast and laser surface-melted Mg-11Y-2.5Zn alloys were examined using scanning electron microscopy. Four wear mechanisms, namely abrasion, delamination, thermal softening, and melting, have operated.  相似文献   

14.
采用真空感应熔炼炉将成分为Ti-6.55Al-3.41Mo-1.77Zr(质量分数)的α+β钛合金在石墨模具中浇铸成棒材。铸态棒材在700°C下热锻后,通过两种不同的热处理后,分别得到细小和粗大的层片状结构。结果表明:铸态组织的晶粒尺寸约为660μm,而锻造后样品具有细小的晶粒尺寸,约为50μm。在1050°C热处理后的α+β钛合金具有细小的层片状结构,得到最佳的硬度、拉伸性能和耐磨性。在800°C热处理后的α+β钛合金具有粗大的层片状结构,具有最大的抗压强度。具有细小层片状结构的热处理态α+β钛合金的磨损率较小,而铸态α+β钛合金由于具有粗大和不均匀的微观组织,因此磨损率较大。  相似文献   

15.
快速凝固(2024Al)-20Si-5Fe合金的磨损行为   总被引:5,自引:0,他引:5  
采用双级雾化水冷快凝与粉末冶金技术制备了(2024Al)-20Si-5Fe(质量分数.%)耐磨合金。分析了合金的微观组织。利用磨损实验研究了合金的耐磨性和磨损失效形式。结果表明:快凝粉末冶金合金具有比铸造合金更细小的微观组织。更高的耐磨性和减磨性。耐磨性是铸造合金的2.5-4倍。快凝合金的磨损失效形式主要是磨粒磨损和疲劳磨损。耐铸造合金的磨损失效形式主要是磨粒磨损、粘着磨损和部分氧化磨损。  相似文献   

16.
Ce对Zn-Al合金组织性能的影响   总被引:1,自引:0,他引:1  
研究了Ce对ZnAl合金(ZA27、ZA43)的力学性能、淬火时效特性及耐磨性的影响。结果表明,Ce能明显细化合金的铸态组织,提高其强度和塑性。当ZA27和ZA43中含Ce量分别为0.10%和0.15%时,获得最佳的力学性能。提出了Ce细化ZnAl合金的机理,加Ce后成分过冷效应所引起的枝晶熔断脱落对细化α相起主要作用。  相似文献   

17.
为研究添加Ti元素对AlCuFeMnNi高熵合金组织和耐磨性的影响,采用真空电弧熔炼技术制备了等摩尔比的AlCuFeMnNi和AlCuFeMnNiTi合金。利用X射线衍射仪、金相显微镜、扫描电镜、显微硬度计和摩擦磨损试验机测试了上述两种合金的物相组成、显微组织、硬度和摩擦磨损性能。结果表明,添加Ti元素后,AlCuFeMnNiTi合金由原来的FCC与BCC1双相结构转变为FCC、BCC1与BCC2三相结构,其点阵常数和晶胞体积均有所增大。两种合金均为典型的树枝状晶,Ti元素的添加使合金晶粒逐步细化,枝晶区域面积增加,晶间区域面积减小,枝晶区域弥散分布有少量领先相BCC2。添加Ti元素后,合金的硬度由423.5 HV0.5提高到498.0 HV0.5;质量损失率和摩擦因数则分别由0.43%、0.59降低至0.39%、0.46,摩擦因数呈先增大后稳定的变化趋势。AlCuFeMnNiTi合金硬度和耐磨性能的提高主要是由Ti元素的添加所引起的细晶强化、固溶强化和晶体结构向高强相转变的综合作用所致。  相似文献   

18.
喷射成形ZA35合金的高温磨损行为   总被引:6,自引:5,他引:1  
采用喷射成形快速凝固技术制备了ZA35-3.5Mn耐磨合金,分析了合金的微观组织,利用摩擦磨损实验研究了合金的耐磨性。结果表明:喷射成形合金具有比铸造合金更细小的微观组织,摩擦因数随温度升高缓慢增加,其摩擦特性比较稳定,是一种比较理想的耐磨材料,具有比铸造合金更高的耐磨性和减磨性。喷射成形合金的磨损失效形式主要是磨粒磨损和疲劳磨损,铸造合金的磨损失效形式主要是磨粒磨损、粘着磨损和部分氧化磨损。  相似文献   

19.
采用OM、SEM、XRD、摩擦试验等分析手段研究了合金铸铁在淬火+回火后增加深冷处理工艺对组织及耐磨性能的影响。结果表明:深冷处理前后合金铸铁的石墨形态均主要以A型为主,级别为5级,深冷处理后马氏体晶界上析出超微细碳化物,残留奥氏体的体积分数由19.6%减小为14.8%,使得合金铸铁的硬度增加了3 HRC;深冷处理后合金铸铁在25~100 ℃的平均热膨胀系数由13.34×10-6 K-1减小至10.97×10-6 K-1,材料随温升其性能稳定性较好;同工况油润滑条件下,深冷处理后的合金铸铁磨损体积和摩擦因数小于未深冷的合金铸铁。  相似文献   

20.
The effect of multi-pass multi-directional forge (MDF) on the tribological properties of ZA22−xSi alloy (x=0, 4, 8 wt.%) was investigated. The results indicate that MDF breaks down the cast microstructure of alloys and produces a well-modified microstructure comprising finely distributed α- and η-phases and primary Si particles. It is also found that, despite the matrix work softening, MDFed ZA22−xSi alloys show high wear resistance. The maximum wear resistance is observed in the five-pass MDFed ZA22−4Si sample, at the applied loads of 10 and 30 N, and its wear rates are lower than the wear rate of the as-cast ZA22 alloy by about 80% and 75%, respectively. MDF also significantly decreases both average friction coefficient and friction coefficient fluctuation of the sample. The high resistance of the substrate to microcracking, formation of hard Si reinforcements, fine redistribution of α- and η-phases in the microstructure, and formation of tribolayers rich in Al and Zn oxides can be considered as the main factors improving the tribological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号