首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文对微晶玻璃脆性材料的超精密磨削加工作了大量的实验研究。研究结果表明 ,对于微晶玻璃等脆性材料 ,其表面粗糙度主要与砂轮的平均磨粒尺寸、砂轮速度、进给量及磨削深度等因素有关。当采用超精密磨床并在 vs=12 0 0 m/ min、f=0~2 0 0μm/ rev、ap=0 .1~ 10μm条件下磨削时 ,只有当金刚石砂轮的平均磨粒尺寸低于 2 0μm,才能在塑性磨削模式下加工出高质量的光滑表面 ,其磨削后的表面粗糙度为 rms:8.0 2 1nm、Ra:6.2 0 0 nm。  相似文献   

2.
光学玻璃塑性模式超精密磨削加工的研究   总被引:14,自引:0,他引:14  
陈明君  张飞虎  董申  李旦 《中国机械工程》2001,12(4):460-463,484
利用超精密磨床磨削加工6种典型的光学玻璃,先从理论上研究了脆性材料脆塑转变的临界值,然后对脆性材料作了大量磨削实验,实验结果表明,超精密磨削脆性材料时存在着断裂模式,断裂与塑性模式、塑性模式,这些模式主要由砂轮磨粒的切削深度进行控制,该磨削表面粗糙度与磨粒尺寸的大小,砂轮的进给量及玻璃的材料有关,当光学玻璃在塑性模式磨削时,其表面层不会产生任何裂纹缺陷,利用超精密磨床进行磨削加工,获得的表面粗糙度Ra低于5nm。  相似文献   

3.
陶瓷材料的超精密磨削加工   总被引:3,自引:1,他引:2  
对陶瓷材料超精密磨削加工的研究结果表明,陶瓷等脆性材料的磨削表面粗糙度主要与砂轮的平均磨粒尺寸、进给量等因素有关。只有当金刚石砂轮的平均磨粒尺寸小于18 .5μm 时,才能在塑性磨削模式下加工出表面粗糙度为rms4 .15nm 、 Ra3 .07nm 的高质量光滑表面。  相似文献   

4.
脆性材料超精密磨削时影响表面质量因素的研究   总被引:16,自引:1,他引:15  
首先从理论上分析了脆性材料在超精密磨削过程中影响表面质量的各种主要因素。然后针对影响脆性材料已加工表面质量的各种主要因素作了大量的试验研究。研究结果表明,对于脆性材料,砂轮的平均磨粒尺寸对已加工表面质量的影响很大。试验证明:当采用超精密磨床并在Vs=1200m/min、f=0—200μm/r、ap=0.1—10μm的磨削条件下进行磨削时,只有当金刚石砂轮的平均磨粒尺寸小于 20μm,才能在塑性磨制模式下加工出高质量的超光滑表面。  相似文献   

5.
钇铝石榴石(YAG)晶体是制造固体激光器的重要材料,超精密磨削是加工YAG晶体等硬脆材料零件的重要方法,研究硬脆材料加工表面的微观变形、脆塑转变机理对超精密磨削加工具有重要的指导作用。为了实现YAG晶体低损伤磨削加工,获得高质量表面,基于弹塑性接触理论和压痕断裂力学,通过分析单磨粒划擦作用下材料表面的变形过程,考虑材料的弹性回复、微观下力学性能的尺寸效应,建立了脆塑转变临界深度的预测模型,并计算得到YAG晶体的脆塑转变临界深度为66.7 nm。在此基础上,通过不同粒度砂轮超精密磨削YAG晶体试验对建立的脆塑转变临界深度预测模型进行验证,并计算不同粒度砂轮在相应工艺条件下的磨粒切深。结果表明,磨粒切深高于脆塑转变临界深度时,YAG晶体磨削表面材料以脆性方式被去除,磨削表面损伤严重;磨粒切深低于脆塑转变临界深度时,磨削表面材料以塑性方式被去除,能够获得高质量磨削表面,加工表面粗糙度达到1 nm。建立的脆塑转变临界深度预测模型能够为YAG晶体的低损伤超精密磨削加工提供理论指导。  相似文献   

6.
为了避免和减小镁铝尖晶石在研磨工艺中产生的亚表面损伤,研究了合理控制磨削参数,实现镁铝尖晶石塑性域磨削的方法。分析了镁铝尖晶石的脆塑转变机理,采用不同尺寸规格的金刚石砂轮磨粒和改变砂轮进给量等参数进行了大量实验,探索了镁铝尖晶石的塑性磨削条件及影响因素,实现了镁铝尖晶石的塑性域高精度磨削。采用VG401MKⅡ型超精密磨床和3000#金刚石砂轮,设定砂轮速度为20m/s,工件速度为0.3m/s,进给量为0.5~3μm/r进行了磨削实验。结果显示:当金刚石砂轮磨粒的平均尺寸小于8μm时可以实现镁铝尖晶石的塑性磨削,其表面粗糙度Ra可以达到2.291nm,透光率可提高17%。研究结果表明,砂轮的平均磨粒尺寸和砂轮进给量对镁铝尖晶石材料的表面加工质量影响很大,该结果为研究磨削高质量镁铝尖晶石表面提供了依据。  相似文献   

7.
利用模压成型技术和真空钎焊技术制备出了磨粒把持力大、力学性能优良的多层钎焊金刚石砂轮;采用在线电解修整技术促使磨钝的磨粒及时脱落,使砂轮在磨削过程中始终保持锋利性;并开展了基于多层钎焊金刚石砂轮在线电解修整技术的超细晶硬质合金精密磨削试验。试验结果表明:在相同磨削条件下,多层钎焊砂轮在线电解修整磨削力较无修整时的磨削力下降了33.7%~57.9%;多层钎焊砂轮在线电解修整磨削技术能有效提高加工表面质量。当进给速度为30 mm/s,磨削深度为15 μm时,无电解磨削加工表面粗糙度为0.35 μm,而在线电解修整磨削表面粗糙度仅为82.1 nm;多层钎焊砂轮在线电解修整磨削残余应力仅为无电解磨削时的38.2%~49.5%。且在线电解修整磨削表面完整性较好,没有出现表面/亚表面裂纹等相关缺陷,可实现超细晶硬质合金等难加工材料的高效精密加工。  相似文献   

8.
针对微晶玻璃超精密磨削加工不可避免的表面/亚表面损伤问题,通过微晶玻璃磨削试验研究500#、1 500#、2 000#和5 000#金刚石砂轮磨削微晶玻璃的表面形貌、表面/亚表面损伤特征及其材料去除机理,揭示微晶玻璃脆性域磨削和塑性域磨削的表面/亚表面损伤特征,提出依次采用500#金刚石砂轮粗磨和5 000#金刚石砂轮精磨的微晶玻璃高效低损伤磨削工艺。结果表明,500#和1 500#金刚石砂轮磨削表面的材料去除方式为脆性断裂去除,2 000#金刚石砂轮磨削表面的材料去除方式同时包括脆性断裂去除和塑性流动去除,5 000#金刚石砂轮磨削表面的材料去除方式为塑性流动去除;脆性域磨削微晶玻璃的表面损伤形式为凹坑、微裂纹、深划痕,亚表面损伤形式为微裂纹;塑性域磨削微晶玻璃的表面损伤形式为微磨痕,亚表面损伤形式为靠近磨削表面的材料的塑性流动。  相似文献   

9.
利用计算机数字模拟技术作为手段分析研究磨粒尺寸大小及形状对磨削加工过程和被磨例表面的影响。结果得出磨粒粒径大小影响到砂轮表层的磨粒中实际参加切削的磨粒数目,磨粒粒径越小,被加工表面粗糙度越小。由大大小小不同粒径磨粒构成的砂轮与单一粒径磨粒的砂轮相比,其被加工表面粗糙度要小得多。唐粒几何形状和磨粒表面微观粗糙度对被加工表面粗糙度影响不大。  相似文献   

10.
大尺寸光学玻璃元件主要采用细磨粒金刚石砂轮进行精密/超精密磨削加工,但存在砂轮修整频繁、工件表面面形精度难以保证、加工效率低等缺点。采用大磨粒金刚石砂轮进行加工则具有磨削比大、工件面形精度高等优点,然而高效精密的修整是其实现精密磨削的关键技术。采用Cr12钢对电镀金刚石砂轮(磨粒粒径151 μm)进行粗修整,借助修整区域聚集的热量加快金刚石的磨损,可使砂轮的回转误差快速降至10 μm以内。结合在线电解修锐技术,采用杯形金刚石修整滚轮对粗修整后的电镀砂轮进行精修整,砂轮的回转误差可达6 μm以内,轴向梯度误差由6 μm降至2.5 μm。通过对修整前后的金刚石砂轮表面磨损形貌成像及其拉曼光谱曲线分析了修整的机理。对应于不同的砂轮修整阶段进行熔融石英光学玻璃磨削试验,结果表明,砂轮回转误差较大时,工件材料表面以脆性断裂去除为主;随着砂轮回转误差和轴向梯度误差的减小,工件表面材料以塑性去除为主,磨削表面粗糙度为Ra19.6 nm,亚表层损伤深度低至2 μm。可见,经过精密修整的大磨粒电镀金刚石砂轮可以实现对光学玻璃的精密磨削。  相似文献   

11.
新型反应烧结碳化硅陶瓷的超精密磨削   总被引:3,自引:0,他引:3  
介绍了一种可用作光学反射镜材料的新型反应烧结碳化硅。采用超精密磨床结合在线电解修整的磨削方法对新型反应烧结碳化硅进行磨削,研究了不同磨粒尺寸、不同结合剂以及不同形状砂轮对磨削面性状的影响,分析了磨削面微段差的形成机理。获得了表面粗糙度Ra=0.57nm的超平滑镜面。  相似文献   

12.
超磨粒(金刚石,CBN)砂轮的出现,使难切削材料的高精度、高效率加工成为可能。本文介绍日本利用超磨粒砂轮进行高效磨削加工的方法。一、高效磨削加工方法1.间歇进给磨削间歇进给磨削采用成形砂轮进行曲面磨削,在深切工件的同时进给量很小,用于要求保证工件形状精度的成形和深槽加工。间歇进给磨削的进刀量为往复磨削进刀量的100~200倍,其走刀量仅为往复磨削的1/100~1/200。间歇进给磨削前,要使用修整工具对砂轮表面进行创型,通过往复进给的循环操作,工件边缘与砂轮最初接触时不产生重复冲击,砂轮变形很小,有利于防止脆性…  相似文献   

13.
《机电一体化》2005,11(3):97-97
金属基超硬磨料砂轮在线电解修整(EIPD)超精密镜面磨削技术是日本理化学研究所大森整博士等于1987年开发的超精密加工新技术,是对超精密磨削加工技术的重大改进。此技术可用于加工各种金属和非金属硬脆(如陶瓷、玻璃等)材料,适用性广泛,加工后的表面粗糙度Ra值可达到纳米级。  相似文献   

14.
微晶玻璃超精密磨削技术研究   总被引:7,自引:3,他引:4  
分析实现微晶玻璃超精密磨削的技术条件和在线电解修整超精密磨削机理,并采用铸铁基金刚石砂轮结合在线电解的磨削方法对微晶玻璃进行了精密磨削,获得Ra为2.308nm的超光滑表面。  相似文献   

15.
超精密磨削加工表面形貌建模与仿真方法宰   总被引:2,自引:2,他引:2  
超精密磨削技术是实现微/纳米加工的主要手段.系统深入研究超精密磨削过程的机理,洞悉磨削加工表面生成的内涵,成为超精密磨削加工技术的重要研究内容之一.提出一种新型的超精密磨削加工表面生成方法.基于Jobnson变换和线性滤波技术,给出砂轮表面形貌数字生成方法.该砂轮表面数值生成方法克服了利用试验测量砂轮表面形貌所得数据而带来的误差,提高了磨削加工表面仿真分析的准确性.根据磨削运动学,建立磨粒运动轨迹方程、相互干涉条件和有效磨粒确定方法.据此,给出超精密磨削加工表面生成算法.通过数值计算生成不同统计学特征的砂轮形貌,并得到不同加工参数下磨削表面的表面形貌,仿真结果验证了所给算法的正确性和有效性.  相似文献   

16.
超精密磨削和镜面磨削是通过在砂轮工作表面精细修整出的大量等高磨粒微刃的精密切削作用和适当接触压力下的摩擦抛光作用,使工件表面获得较小的表面粗糙度值的磨削方法。  相似文献   

17.
针对核主泵关键部件材料镍基碳化钨涂层,采用三种磨粒粒度金刚石砂轮进行平面磨削试验,研究工艺参数、磨粒粒度对涂层材料磨削力、表面粗糙度和表面残余应力的影响规律。实验结果表明:不同粒度砂轮磨削时,随着磨削深度和工件进给速度增加,法向磨削力和切向磨削力均逐渐增大,表面粗糙度值呈现先增大、后减小再增大的趋势,平行和垂直磨削方向的表面残余压应力逐渐增大,且垂直磨削方向应力值更大。综合考虑磨削力、表面粗糙度、磨削表面残余应力和磨削加工效率,600目砂轮具有较好的加工效果,其对应的优化磨削参数为:磨削深度为10μm,工件进给速度为8 m/min。  相似文献   

18.
ALON高陡度薄壁保形非球面的超精密磨削工艺   总被引:1,自引:0,他引:1  
为了实现新型红外陶瓷ALON高陡度薄壁保形非球面的超精密磨削加工,首先根据ALON的材料属性和高陡度薄壁保形非球面的结构特性,进行了其超精密磨削加工工艺性分析,并基于有限元计算方法,完成了面向ALON高陡度薄壁保形非球面的精密夹具的设计以及关键参数的优化。然后完成了ALON的超精密磨削工艺实验,工艺实验结果表明减小工件转速和砂轮粒度都会降低ALON的平均表面粗糙度Ra值,但砂轮粒度对磨削后ALON的表面粗糙度影响更显著。最后实现了ALON高陡度薄壁保形非球面的超精密磨削加工,磨削后的ALON高陡度薄壁保形非球面的面形精度PV值为2μm,表面粗糙度Ra值可达8.6nm。  相似文献   

19.
单层钎焊金刚石砂轮作为一种新型的磨削工具,具有磨粒固结强度高、磨粒出露大、容屑空间大等优点,比较适合高效率大切深的强力磨削,然而这种工具对高性能的脆性材料的精密磨削却比较困难。本文通过两种精密的修整工艺,使得加工表面质量大大提高。通过观察砂轮磨粒形态的变化可知,磨粒在修整过程中存在有磨损钝化、破碎、表面粘附等现象;通过对砂轮轮廓的激光测量可知,砂轮的磨粒等高性在修整过程中是明显改善的。通过修整磨粒粒径300μm的钎焊砂轮磨削氧化锆的表面粗糙度达到了Ra0.2μm。  相似文献   

20.
利用固结磨粒自旋转磨削加工方法,通过金刚石磨削和化学机械磨削实现了蓝宝石晶片的高效、高质量平坦化加工。采用不同磨粒粒径的金刚石砂轮实现了蓝宝石晶片较高的材料去除率或较好的表面质量。开发了高磨粒浓度Cr2O3砂轮,采用化学机械磨削对金刚石磨削后的蓝宝石晶片进行平坦化加工。实验结果表明,化学机械磨削能够去除金刚石磨削的表面和亚表面缺陷,最终获得表面粗糙度Ra<1 nm、无/微损伤的蓝宝石晶片。通过理论分析单颗金刚石磨粒的磨削力,发现磨粒粒径是影响材料去除率和表面质量的主要影响因素。通过XPS分析证明了Cr2O3和蓝宝石之间的固相反应过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号