共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
皮肤覆盖肌肉、骨骼和身体的每个部分,是人体中最大的器官。由于其暴露于外界,所以感染更容易发生在皮肤上。皮肤病作为一种常见疾病,利用计算机技术对其进行辅助诊断,有助于减轻医生负担。针对常规卷积神经网络应用于皮肤病图像分类时由于不同种皮肤病图像之间的类间相似性以及同种皮肤病图像之间具有类内差异性导致分类困难的问题,提出一种改进双线性特征融合模型。使用经过剪枝的Inception-ResNet-v1和v2版本作为特征提取器并行提取图像特征,对特征进行双线性融合,获取更多阶数的特征信息可以提高模型对图像细节的敏感度。然后添加额外的软注意力模块,通过加权和的方式进行过滤或者加强,给图像每个位置给予不同的权重以达到对模型的加强效果。在skin-cancer-classesisic数据集上的7种皮肤病图像上进行训练,与S-CNN、MobileNet和Incremental CNN的对比证明了该模型的有效性,在Precision、Recall和F1-Score指标上该模型均为最优。 相似文献
4.
5.
为解决稀疏表示在提取全局纹理特征时受维数限制的问题,提出一种基于随机特征字典的特征提取及分类方法。方法利用稀疏系数中非零系数的分布特点,统计各图像块在稀疏分解过程中字典原子的使用频率,得到能突出纹理在稀疏域类别信息的直方图特征,进而实现分类。为提高分类准确率,通过随机投影将多尺度多方向的小波特征进行融合,并对其训练得到纹理描述能力更强的小波随机特征字典。在分类实验中,其分类准确率达94.79%,并能在噪声、光照条件影响下获得较好的鲁棒性,在分析全局纹理特征方面具有高效、稳定的特点。 相似文献
6.
基于DenseNet和ResNet融合的发动机孔探图像分类研究 总被引:2,自引:0,他引:2
孔探是检测发动机内部损伤最重要的手段之一.为了解决发动机孔探检查中孔探人员主要依靠经验对损伤进行界定的问题,研究了基于DenseNet和ResNet融合的新型单通道网络结构,实现对发动机部件的分类,为后期孔探缺陷自动识别建立基础.通过对某大修厂孔探数据和自建数据进行处理,完成了孔探图像分类数据集的构建;训练新型的49层网络模型,在自建数据集测试集上测试的准确率和平均召回率分别为96.0% 和95.9%,有较好的泛化能力,可以有效的对发动机部件进行分类. 相似文献
7.
目前,卷积神经网络已成为视觉对象识别的主流机器学习方法。有研究表明,网络层数越深,所提取的深度特征表征能力越强。然而,当数据集规模不足时,过深的网络往往容易过拟合,深度特征的分类性能将受到制约。因此,提出了一种新的卷积神经网络分类算法:并行融合网FD-Net。以网络融合的方式提高特征的表达能力,并行融合网首先组织2个相同的子网并行提取图像特征,然后使用精心设计的特征融合器将子网特征进行多尺度融合,提取出更丰富、更精确的融合特征用于分类。此外,
采用了随机失活和批量规范化等方法协助特征融合器去除冗余特征,并提出了相应的训练策略控制计算开销。最后,分别以经典的ResNet、InceptionV3、DenseNet和MobileNetV2作为基础模型,在UECFOOD-100和Caltech101等数据集上进行了深入的研究和评估。实验结果表明,并行融合网能在有限的训练样本上训练出识别能力更强的分类模型,有效提高图像的分类准确率。 相似文献
8.
天气状况对室外视频设备的成像效果有很大影响。为实现成像设备在恶劣天气下的自适应调整,从而提升智能监控系统的效果,同时针对传统的天气图像判别方法分类效果差且对相近天气现象不易分类的不足,以及深度学习方法识别天气准确率不高的问题,提出了一个将传统方法与深度学习方法相结合的特征融合模型。融合模型采用4种人工设计算法提取传统特征,采用AlexNet提取深层特征,利用融合后的特征向量进行图像天气状况的判别。融合模型在多背景数据集上的准确率达到93.90%,优于对比的3种常用方法,并且在平均精准率(AP)和平均召回率(AR)指标上也表现良好;在单背景数据集上的准确率达到96.97%,AP和AR均优于其他模型,且能很好识别特征相近的天气图像。实验结果表明提出的特征融合模型可以结合传统方法和深度学习方法的优势,提升现有天气图像分类方法的准确度,同时提高在特征相近的天气现象下的识别率。 相似文献
9.
该文提出一种新的道路分类方法,在灰度共生矩阵的基础上得到图像的纹理特征,并通过决策树模型得到道路图像分类的决策树。实验证明,该方法有着较高的准确率,其结果在分类方面有着简单易行的特点。 相似文献
10.
图像在日常生活中广泛存在,图像分类具有重要的现实意义。针对当前多标签图像分类中因神经网络模型复杂以及提取到的图像特征信息不足而导致分类准确率较低、计算复杂度高等问题,提出一种融合卷积神经网络与交互特征的多标签分类方法,即MLCNN-IF模型。MLCNN-IF模型主要分成2步,首先参考传统CNN基本结构搭建一个仅有9层的轻量级神经网络(MLCNN),用于处理图像数据并提取特征;其次基于MLCNN提取的特征,通过交互特征方法产生各独立特征的组合特征,以此获得新的更丰富的特征集。实验结果表明,MLCNN-IF模型对比Alex Net、Goog Le Net和VGG16在4种多标签图像数据集上取得了更好的分类结果,其准确率和精准率分别平均提高9%和4.8%;同时MLCNN网络结构相对更简洁,有效降低了模型参数量和时间复杂度。 相似文献
11.
支持向量机(SVM)是一种表现卓越的分类方法,而灰度共生矩阵(GLCM)则是一种很好的纹理分析方法,故而本文提出了一种使用灰度共生矩阵进行特征提取的应用支持向量机的纹理特征分类法。实验结果表明,与直接应用灰度信息进行分类的支持向量机算法相比,本文方法可以取得更为准确的分类结果。 相似文献
12.
纹理图像分类系统的设计及实现 总被引:6,自引:0,他引:6
以显微图像分析为应用背景,设计并实现了基于改进的纹理谱方法提取特征和以神经网络作为分类器的纹理图像分类系统,分析了纹理分析方案的实施所遇到玫纹理图像分类的抗干扰性能,给出了具体实验结果。 相似文献
13.
现有的小样本学习算法未能充分提取细粒度图像的特征,导致细粒度图像分类准确率较低。为了更好地对基于度量的小样本细粒度图像分类算法中提取的特征进行建模,提出了一种基于自适应特征融合的小样本细粒度图像分类算法。在特征提取网络上设计了一种自适应特征融合嵌入网络,可以同时提取深层的强语义特征和浅层的位置结构特征,并使用自适应算法和注意力机制提取关键特征。在训练特征提取网络上采用单图训练和多图训练方法先后训练,在提取样本特征的同时关注样本之间的联系。为了使得同一类的特征向量在特征空间中的距离更加接近,不同类的特征向量的距离更大,对所提取的特征向量做特征分布转换、正交三角分解和归一化处理。提出的算法与其他9种算法进行实验对比,在多个细粒度数据集上评估了5 way 1 shot的准确率和5 way 5 shot的准确率。在Stanford Dogs数据集上的准确率提升了5.27和2.90个百分点,在Stanford Cars数据集上的准确率提升了3.29和4.23个百分点,在CUB-200数据集上的5 way 1 shot的准确率只比DLG略低0.82个百分点,但是5 way 5 shot上提升了1.55个百分点。 相似文献
14.
15.
16.
基于特征融合的图像情感语义分类 总被引:1,自引:0,他引:1
基于颜色或颜色-空间信息的图像分类方法,由于没有考虑图像中所含目标对象的形状特征,分类效果不够理想,以服装图像作为数据源,提出并设计了颜色-边缘方向角二维直方图,将图像的颜色特征与形状特征融合起来进行图像分类。图像中的低阶可视化特征与高阶情感概念之间有着密切的关联,分析了服装图像的颜色和形状的融合特征与情感之间的相关性,采用概率神经网络作为分类算法来完成情感语义分类,实验结果表明,该方法的分类精度有了明显的提高。 相似文献
17.
针对深度学习单一模型不能有效处理不确定性预测结果的问题,文中从三支决策出发,将阴影集理论引入图像分类中,构建两阶段图像分类方法.首先,使用卷积神经网络分类样本,获得隶属度矩阵.然后,使用基于阴影集的样本划分算法处理隶属度矩阵,获得分类结果中存在不确定性的部分,即不确定域,进行延迟决策.最后,使用特征融合技术,将SVM作为分类器进行二次分类,降低分类结果的不确定性,提高分类准确率.在CIFAR-10、Caltech 101数据集上的实验验证文中方法的有效性. 相似文献
18.
面对大规模视频数据带来的全新挑战,具备硬件友好特性的分布式视频压缩感知应运而生。由于传统基于分析模型的分布式视频压缩感知重构方法计算复杂度高,难以满足实时应用的要求,因此深度学习技术被逐渐引入。然而,现有基于深度学习的重构方法忽略了帧的纹理特征,限制了重构性能。由于同图像组中的视频帧具有较高的相似性,因此可以选择相邻视频帧作为当前视频帧纹理特征的参考。为了解决这个问题,提出一种基于纹理特征的分布式视频压缩感知自适应重构网络,命名为TF-DCVSNet。具体来说,TF-DCVSNet利用已重构的相邻帧纹理特征,激活当前重构帧的重构网络模块,进行自适应重构。大量实验验证了TF-DCVSNet的有效性。 相似文献
19.
目的 针对花卉图像标注样本缺乏、标注成本高、传统基于深度学习的细粒度图像分类方法无法较好地定位花卉目标区域等问题,提出一种基于选择性深度卷积特征融合的无监督花卉图像分类方法。方法 构建基于选择性深度卷积特征融合的花卉图像分类网络。首先运用保持长宽比的尺寸归一化方法对花卉图像进行预处理,使得图像的尺寸相同,且目标不变形、不丢失图像细节信息;之后运用由ImageNet预训练好的深度卷积神经网络VGG-16模型对预处理的花卉图像进行特征学习,根据特征图的响应值分布选取有效的深度卷积特征,并将多层深度卷积特征进行融合;最后运用softmax分类层进行分类。结果 在Oxford 102 Flowers数据集上做了对比实验,将本文方法与传统的基于深度学习模型的花卉图像分类方法进行对比,本文方法的分类准确率达85.55%,较深度学习模型Xception高27.67%。结论 提出了基于选择性卷积特征融合的花卉图像分类方法,该方法采用无监督的方式定位花卉图像中的显著区域,去除了背景和噪声部分对花卉目标的干扰,提高了花卉图像分类的准确率,适用于处理缺乏带标注的样本时的花卉图像分类问题。 相似文献
20.
利用多个稀疏表示分类器融合的决策信息对图像进行分类,可避免单个特征对图像分类的影响。提出一种自适应调节权重的多稀疏分类器融合图像分类方法。对原始图像分别提取3组不同特征,并训练出各自稀疏表示分类器;根据各个子分类器的准确率,通过迭代计算自适应确定各分类器最终权重;融合各子分类器的输出结果进行最终类别判断。基于Cifar-10图像数据集进行多组实验,结果表明,相对仅提取单特征的图像分类方法,该方法有效提高了图像分类准确率。 相似文献