首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
13C NMR spectra were obtained for pure CH4, mixed CH4+THF, and mixed CH4+Neohexane hydrates in order to identify hydrate structure and cage occupancy of guest molecules. In contrast to the pure CH4 hydrates, the NMR spectra of the mixed CH4+THF hydrate verified that methane molecules could occupy only the small portion of 512 cages because the addition of THF, water-soluble guest component, to aqueous solution prevents the complete filling of methane molecules into small cages. Furthermore, from these NMR results one important conclusion can be made that methane molecules can’t be enclathrated at all in the large 51264 cages of structure II. In addition, gas uptake measurements were carried out to determine methane amount consumed during pure and mixed hydrate formation process. The moles of methane captured into pure CH4 hydrate per mole of water were found to be similar to the full occupancy value, while the moles of methane captured into the mixed CH4+THF hydrate per moles of water were much lower than the ideal value. The overall results drawn from this study can be usefully applied to storage and transportation of natural gas.  相似文献   

2.
Gas hydrates from CO2/N2 and CO2/H2 gas mixtures were formed in a semi-batch stirred vessel at constant pressure and temperature of 273.7 K. These mixtures are of interest to CO2 separation and recovery from flue gas and fuel gas, respectively. During hydrate formation the gas uptake was determined and the composition changes in the gas phase were obtained by gas chromatography. The rate of hydrate growth from CO2/H2 mixtures was found to be the fastest. In both mixtures CO2 was found to be preferentially incorporated into the hydrate phase. The observed fractionation effect is desirable and provides the basis for CO2 capture from flue gas or fuel gas mixtures. The separation from fuel gas is also a source of H2. The impact of tetrahydrofuran (THF) on hydrate formation from the CO2/N2 mixture was also observed. THF is known to substantially reduce the equilibrium formation conditions enabling hydrate formation at much lower pressures. THF was found to reduce the induction time and the rate of hydrate growth.  相似文献   

3.
Gas hydrate is a nonstoichiometric crystal compound formed from water and gas. Most nonvisual studies on gas hydrate are unable to detect how much water is converted to hydrates, and thus, the hydrate stoichiometry calculations are inaccurate. This study investigated the CO2 hydrate formation process in porous media directly and quantitatively. The characteristics of the time-variable consumption of hydrate formation indicated a two-stage formation, hydrate enclathration and continuous occupancy. The enclathration stage occurred in the first 20 min of the formation when considerable heat is released. The continuous occupancy stage lasted longer than the hydrate enclathration because the empty cages in previously formed hydrates would also be occupied. The higher formation pressures can accelerate water consumption and increase cage occupancy. The compositions of completely formed CO2 hydrates at 2.7, 3.0, and 3.3 MPa and 275.15 K were determined as CO2·6.90H2O, CO2·6.70H2O, and CO2·6.49H2O, respectively.  相似文献   

4.
The properties of hydrogen enclathration by cyclic ethers and acetone clathrate hydrates were investigated by powder X-ray diffraction, Raman spectroscopic analysis and volumetric analysis. Powder X-ray diffraction profiles indicate that the hydrates are structure-II hydrates. The variation in lattice constant by hydrogen occupation was investigated. This result indicates that inclusion of H2 atom within empty small cage changes size of host cages depending on type of guest molecule. Raman results show that the samples formed binary clathrate hydrate of hydrogen and each organic compound. The amount of encaged H2 was found to be comparable to that of H2–THF binary hydrate. The trend of the changes for lattice constants is not related to the amount of encaged H2. These results suggest that the organic compounds investigated in this study can be used as alternatives to THF for H2 enclathration.  相似文献   

5.
This paper investigates an original method to efficiently trigger gas hydrate crystallization. This method consists of an in situ injection of a small amount of THF into an aqueous phase in contact with a gas-hydrate-former phase at pressure and temperature conditions inside the hydrate metastable zone. In the presence of a CO2–CH4 gas mixture, our results show that the THF injection induces immediate crystallization of a first hydrate containing THF. This triggers the formation of the CO2–CH4 binary hydrate as proven by the pressure and temperature reached at equilibrium. This experimental method, which “cancels out” the stochasticity of the hydrate crystallization, was used to evaluate the effect of the anionic surfactant SDS at different concentrations, on the formation kinetics of the CO2–CH4 hydrate. The results are discussed and compared with those published in a recent article (Ricaurte et al., 2013), where THF was not injected but present in the aqueous phase from the beginning and at much higher concentrations.  相似文献   

6.
7.
实验研究了固相分数为8.2%~23.1%的CO2水合物浆在内径为8 mm的圆管中的流动特性。结果发现水合物浆在管内的流动压降随着流速的增加而增大。当流速低于0.60 m·s-1时,浆体流变指数小于1,且随着固相体积分数的增大而减小,CO2水合物浆为H-B流体,其表观黏度随着流速的增大而减小,呈剪切变稀特性。剪切速率为600 s-1时,CO2水合物浆的表观黏度为8.5~10.6 mPa·s。实验得到了CO2水合物浆的流变特征参数及其流变方程,可为CO2水合物浆的流动及其应用研究提供理论指导。  相似文献   

8.
This work presents a theoretical prediction of the cage occupancy of CH4 in small cages and the heat of dissociation for THF-CH4 hydrate using the predictive Soave-Redlich-Kwong group contribution method combined with the UNIFAC model. The predicted cage occupancy of CH4 gradually increases with increasing pressure, indicating that the CH4 molecules could readily be encaged in the small 512 cages of the sII hydrate framework stabilized by THF molecules. The molar enthalpy of encagement of CH4 in the small 512 cages of the sII clathrate hydrate is estimated to be 26.7±1.7 kJ mol?1.  相似文献   

9.
Gas hydrates from a (40/60 mol %) CO2/H2 mixture, and from a (38.2/59.2/2.6 mol %) CO2/H2/C3H8 mixture, were synthesized using ice powder. The gas uptake curves were determined from pressure drop measurements and samples were analyzed using spectroscopic techniques to identify the structure and determine the cage occupancies. Powder X‐ray diffraction (PXRD) analysis at ?110°C was used to determine the crystal structure. From the PXRD measurement it was found that the CO2/H2 hydrate is structure I and shows a self‐preservation behavior similar to that of CO2 hydrate. The ternary gas mixture was found to form pure structure II hydrate at 3.8 MPa. We have applied attenuated total reflection infrared spectroscopic analysis to measure the CO2 distribution over the large and small cavities. 1H MAS NMR and Raman were used to follow H2 enclathration in the small cages of structure I, as well as structure II hydrate. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

10.
Hydrate-based desalination could be a promising technique for producing fresh water from saline water, as it is an eco-friendly process and suitable for large-scale implementation. To make the hydrate-based desalination technology easily scalable, we looked at using air (or N2) or CO2 as a hydrate former, along with cyclopentane (CP). Hydrate former CP helps to reduce the operating conditions, as CP forms hydrate at ambient pressure. However, hydrate formation kinetics due to water-insoluble CP is slow. In this work, the kinetics of hydrate formation in saline water were investigated and compared to identify the utility of CO2 and N2 as hydrate formers for desalination work. The addition of CP as a hydrate former should transform the structure of CO2 hydrate from structure I (sI) to structure II (sII), as CP occupies the large cages (51264) in the gas hydrate. A set of three similar reactors were used for this study to collect data quickly. Furthermore, the triple reactor setup is a unique reactor design mounted on a shaker, and a set of SS-316 balls present inside the horizontal reactor imparts the mixing. Experiments with the CO2-CP mixture and N2-CP mixture have been studied in the presence or absence of 3 wt.% NaCl at 274 K and 3 MPa pressure. The gas uptake kinetics, water recovery, and separation efficiency have been investigated.  相似文献   

11.
CO2 hydrate desserts are carbonated frozen desserts in which the CO2 is trapped in a crystalline water‐carbon dioxide structure called a CO2 clathrate hydrate. The CO2 concentration of the dessert enables strong perception of carbonation, but CO2 hydrate dissociation during heat shock can cause high package pressures during storage and distribution. In this work, a model is developed for package pressure as a function of temperature, CO2 content, package volume, dessert mass, and recipe. The model is validated by comparison with an experimental measurement of the pressure and mass of a CO2 hydrate dessert subjected to heat shock. It is shown that during heat shock a sealed package can reach pressures greater than the ice‐CO2 hydrate equilibrium pressure. At pressures above the ice‐CO2 hydrate equilibrium pressure, the fraction of water crystallized in the dessert can be increased, potentially mitigating heat shock damage. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

12.
Hydrate additives can be used to mitigate hydrate formation conditions, promote hydrate growth rate and improve separation efficiency. CO2 + N2 and CO2 + CH4 systems with presence of sodium dodecyl sulfate (SDS) or tetrahydrofuran (THF) are studied to analyze the effect of hydrate additives on gas separation performance. The experiment results show that CO2 can be selectively enriched in the hydrate phase. SDS can speed up the hydrate growth rate by facilitating gas molecules solubilization. When SDS concentration increases, split and loss fraction increase initially and then decrease slightly, resulting in a decreased separation factor. The optimum concentration of SDS exists at the range of 100–300 ppm. As THF can be easily encaged in hydrate cavities, hydrate formation condition can be mitigated greatly with its existence. Additionally, THF can also strengthen hydrate formation. The THF effect on separation performance is related to feed gas components. CO2 occupies the small cavities of type II hydrate prior to N2. But the competitiveness of CO2 and CH4 to occupy cavities are quite fair. The variations of split fraction, loss fraction and separation factor depend on the concentration of THF added. The work in this paper has a positive role in flue gas CO2 capture and natural gas de-acidification.  相似文献   

13.
In this study, the dissociation of isolated carbon dioxide hydrate particles of sizes in the range 0.25–2.5 mm was investigated. It was found that below the ice melting point, the hydrates dissociated into supercooled water (metastable liquid) and gas. The formation of the liquid phase during CO2 hydrate dissociation was visually observed, and the pressures of the hydrate dissociation into supercooled water and gas were measured in the temperature range 249–273 K. These pressures agreed well with the calculated data for the supercooled water–hydrate–gas metastable equilibrium (Istomin et al., 2006). In the PT area on the phase diagram bounded by the ice–hydrate–gas equilibrium curve and the supercooled water–hydrate–gas metastable equilibrium curve, hydrates could exist for a long time because the metastable phase and their stability are not connected to the self-preservation effect. The growth of the metastable CO2 hydrate film on the surface of supercooled water droplets formed during the hydrate dissociation was observed at pressure above the three-phase supercooled water–hydrate–gas metastable equilibrium pressure but still below the three-phase ice–hydrate–gas equilibrium pressure. It was found that the growth rate of the metastable CO2 hydrate film was higher by a factor of 25 and 50 than that for methane hydrate and propane hydrate, respectively.  相似文献   

14.
In this work, nonequilibrium thermodynamics and phase field theory (PFT) has been applied to study the kinetics of phase transitions associated with CO2 injection into systems containing CH4 hydrate, free CH4 gas, and varying amounts of liquid water. The CH4 hydrate was converted into either pure CO2 or mixed CO2?CH4 hydrate to investigate the impact of two primary mechanisms governing the relevant phase transitions: solid‐state mass transport through hydrate and heat transfer away from the newly formed CO2 hydrate. Experimentally proven dependence of kinetic conversion rate on the amount of available free pore water was investigated and successfully reproduced in our model systems. It was found that rate of conversion was directly proportional to the amount of liquid water initially surrounding the hydrate. When all of the liquid has been converted into either CO2 or mixed CO2?CH4 hydrate, a much slower solid‐state mass transport becomes the dominant mechanism. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3944–3957, 2015  相似文献   

15.
An elementary model for the dissolution of pure hydrate in undersaturated water is proposed that combines intrinsic decomposition within a desorption film and the subsequent diffusion of the released hydrate guest species into bulk water. Applying the proposed approach to recently published measurements of the decomposition rates of methane (CH4) and carbon dioxide (CO2) hydrates in deep seawater suggests that the concentration of the hydrate guest species at the interface between desorption film and diffusive boundary layer may be much lower than ambient solubility. Calculations, however, fail to account for the observed proportionality of decomposition rate with solubility for both CH4 and CO2 hydrates. This may indicate a limitation in the range of applicability of published formulas for intrinsic hydrate decomposition rates.  相似文献   

16.
Clathrate compounds are crystalline materials formed by a physical interaction between host and relatively light guest molecules. Various types of nano-sized cages surrounded by host frameworks exist in the highly unique crystalline structures and free guest molecules are entrapped in an open host-guest network. Recently, we reported two peculiar phenomena, swapping and tuning, naturally occurring in the hydrate cages. Helium, one of the smallest light guest molecules, must be the challengeable material in the sense of physics and moreover possesses versatile applications in the field of superconductivity technology and thermonuclear industry. In this regard, we attempted for the first time to synthesize helium hydrates at moderate temperature and pressure conditions. According to inclusion phenomena, helium itself normally cannot form clathrate hydrates due to being too small molecularly without the help of hydrate former molecules (sI, sII, and sH formers). In this study, the hydrate equilibria of the binary clathrate hydrate containing tetrahydrofuran, helium, and water were determined at 2, 3, 5.56 THF mol%. Direct volumetric measurements were also carried out to confirm the exact amount of helium captured in the hydrate cages. Finally, the crystalline structure of the formed mixed hydrates was identified by powder X-ray diffraction, resulting in structure II.  相似文献   

17.
In this study are reported the pressure-temperature phase diagrams of F-22 in both pure water and aqueous NaCl solutions in the region where the hydrate forms. From these data we have determined the hydrate decomposition conditions and the invariant points including the eutectic. These are the necessary thermo-dynamic data for evaluating F-22 as an agent for use in the hydrate process for desalination of sea water. Other thermal, mechanical, and economic properties of pure F-22 are well known, e.g. duPont data (1). Kinetic data on the rate of formation of the hydrate in a stirred reactor will be reported at a later date.  相似文献   

18.
Gas transport through interfacially formed poly(N,N-dimethylaminoethyl methacrylate) membranes was investigated. The membrane performance for the separation of binary CO2/N2, CO2/CH4 and CO2/H2 mixtures was studied, and the coupling effects between the permeating species were evaluated by comparing the permeance of individual components in the mixture with their pure gas permeance. For the permeation of these binary gas mixtures, the presence of CO2 was shown to influence the permeation of the other components (i.e., N2, H2 and CH4), whereas the permeation of CO2 was not affected by these components. In consideration that water vapor is often encountered in applications involving CO2 separation, the presence of water vapor on the membrane permselectivity was also studied. When hydrated, the membrane was shown to be more permeable to CO2, while the membrane selectivity did not change significantly. Unlike membranes based on size-sieving of penetrant molecules, the present membranes exploit the favorable interactions between the hydrophilic quaternary amines in the membrane and CO2, especially in the presence of water vapor in the feed.  相似文献   

19.
Significant effort including field work has been devoted to develop a natural gas extraction technology from natural gas hydrate reservoirs through the injection of carbon dioxide. Natural gas hydrate is practically methane hydrate. The hypothesis is that carbon dioxide will be stored as hydrate owing to its favorable stability conditions compared to methane hydrate. Although the dynamics of the CO2/CH4 exchange process are not entirely understood it is established that the exchange process is feasible. The extent is limited but even if the CH4 recovery is optimized there is a need for a CH4/CO2 separation plant to enable a complete cyclic sequence of CO2 capture, injection and CH4 recovery. In this paper we propose an alternative paradigm to the Inject (CO2)/Exchange with (CH4)/Recover (CH4) one namely Recover (CH4) first and then Inject (CO2) for Storage.  相似文献   

20.
-It has been reported that some aldehyde compounds have formed simple sII clathrate hydrates without help-gas molecules, showing a self-forming effect. However, the structure of aldehyde hydrates is quite unstable due to the “gem-diol reaction”. According to the previous studies, the aldehyde hydrate slowly decomposes at atmospheric condition with the conversion of aldehyde to gem-diol. We investigated binary aldehyde (acetaldehyde, propionaldehyde, and isobutyraldehyde)+methane clathrate hydrate with spectroscopic and thermodynamic analyses. Similar to the simple aldehyde hydrate, the binary hydrates also formed a sII hydrate. During the hydrate formation process, we found that most of the aldehydes converted to gem-diols and were then incorporated into the large cages of the sII hydrate. Depending on the equilibrium constant of the gem-diol reaction caused by the molecular structures of the three aldehydes, different phase equilibrium curves of aldehyde+methane hydrates were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号