共查询到20条相似文献,搜索用时 15 毫秒
1.
In this communication, we first report hydrate dissociation conditions for the nitrogen+cyclopentane, cyclohexane or methyl cyclohexane+water and ethane+cyclopentane, cyclohexane or methyl cyclohexane+water systems at various temperatures. The experimental data were generated using an isochoric pressure-search method. The hydrate dissociation data for the aforementioned systems along with the hydrate dissociation data for the methane, carbon dioxide or hydrogen sulfide+cyclopentane, cyclohexane or methyl cyclohexane+water systems collected from the literature are compared with the corresponding literature data in the absence of the aforementioned heavy hydrocarbons in order to study the hydrate promotion effects of cyclopentane, cyclohexane or methyl cyclohexane. It is shown that these effects on ethane simple hydrate are not considerable unlike the corresponding effects on nitrogen, methane, carbon dioxide and hydrogen sulfide simple hydrates. 相似文献
2.
Jun Sakamoto 《Chemical engineering science》2008,63(24):5789-5794
Thermodynamic stability and hydrogen occupancy on the hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrate have been investigated by means of phase equilibrium (pressure-temperature) measurements and Raman spectroscopic analyses for two mole fractions, 0.018 and 0.034 (stoichiometric for the cubic structure) of tetra-n-butyl ammonium fluoride aqueous solutions. In the case of higher concentration (0.034), the stability boundary curve of hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrate locates at about 23 K higher temperature than that of hydrogen+tetrahydrofuran mixed gas hydrate. The storage capacity of hydrogen in the cubic structure for the hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrate is smaller than that of hydrogen+tetrahydrofuran mixed gas hydrate. In the case of hydrate prepared from the lower concentration (0.018) of aqueous solution, the Raman spectra and phase behavior reveal that the cubic structure of semi-clathrate hydrate is changed to a different one at about 9 MPa and 299.2 K. The new structure can entrap larger amount of hydrogen than the cubic one. The stability boundary curve of hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrate obtained in the aqueous solution of lower mole fraction (0.018) is shifted to slightly low-temperature or high-pressure side from that of higher mole fraction (0.034). 相似文献
3.
Strontium niobate SrNb2O6 has been synthesized by columbite solid-state reaction method and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and temperature as well as frequency dependence of dielectric and impedance study. XRD analysis indicates single phase formation of the compound with ∼180 nm crystallite size. Study of SEM micrographs pointed out that prepared material has good sinterability and enough density with homogeneous grain distribution. It was found that the magnitude of relative dielectric constant (?r) was relatively high with low dielectric loss compared with reported columbite compounds. Impedance spectroscopy was used to characterize the electrical behavior of the compound. AC impedance spectrum results indicate that the relaxation mechanism of the material is temperature dependent and has bulk and grain boundary contribution in different temperature ranges. 相似文献
4.
Jebraeel GholinezhadAntonin Chapoy Bahman Tohidi 《Chemical Engineering Research and Design》2011,89(9):1747-1751
The relation between anthropogenic emissions of CO2 and its increased levels in the atmosphere with global warming and climate change has been well established and accepted. Major portion of carbon dioxide released to the atmosphere, originates from combustion of fossil fuels. Integrated gasification combined cycle (IGCC) offers a promising fossil fuel technology considered as a clean coal-based process for power generation particularly if accompanied by precombustion capture. The latter includes separation of carbon dioxide from a synthesis gas mixture containing 40 mol% CO2 and 60 mol% H2.A novel approach for capturing CO2 from the above gas mixture is to use gas hydrate formation. This process is based on selective partition of CO2 between hydrate phase and gas phase and has already been studied with promising results. However high-pressure requirement for hydrate formation is a major problem.We have used semiclathrate formation from tetrabutylammonium bromide (TBAB) to experimentally investigate CO2 capture from a mixture containing 40.2 mol% of CO2 and 59.8 mol% of H2. The results shows that in one stage of gas hydrate formation and dissociation, CO2 can be enriched from 40 mol% to 86 mol% while the concentration of CO2 in equilibrium gas phase is reduced to 18%. While separation efficiency of processes based on hydrates and semi-clathrates are comparable, the presence of TBAB improves the operating conditions significantly. Furthermore, CO2 concentration could be increased to 96 mol% by separating CO2 in two stages. 相似文献
5.
We report easy preparation of recently discovered highly chlorinated fullerenes Th-C60Cl24, C1-C60Cl28, and D3d-C60Cl30 in high-temperature reactions of C60 with PCl5 and ICl. Formation and interconversion of chlorofullerenes was investigated in details for C60-ICl system. C60Cl28 is the least stable chlorofullerene that undergoes rearrangement (accompanied by partial chlorine elimination) into more stable Th-C60Cl24 under more drastic reaction conditions (increased temperature and time of chlorination). Th-C60Cl24 yields D3d-C60Cl30 at temperatures above 220 °C via a sequence of rearrangements and further addition of chlorine. In contrast to the fullerene reaction with ICl, interaction of C60 with PCl5 is very selective with respect to formation of C60Cl24 in a wide temperature range. Solid-state electronic (UV-Vis) and vibrational (IR) spectra of chlorinated fullerenes C60Cl24, C60Cl28, C60Cl30 and fluorinated fullerenes C60F18 and C60F36 were recorded in the spectral range between 30 and 45,000 cm−1. Raman spectra were also acquired for all investigated compounds. Moreover, molecular geometry of the C60Cl24 and its theoretical IR-absorption spectrum were calculated using B3LYP/STO-3G chemistry model. 相似文献
6.
Sushrisangita Sahoo Sugato Hajra Manojit De R.N.P. Choudhary 《Ceramics International》2018,44(5):4719-4726
In the present paper, the effect of addition of a small amount (8 wt%) of barium titanate (BT) on electrical properties of bismuth sodium titanate (BNT) forming a solid solution of a composition (0.92)(Bi0.5Na0.5TiO3)+(0.08)(BaTiO3) (BNT-BT-8) has mainly been reported. The solid solution of BNT-BT-8 was prepared by a cost effective and standard mixed-oxide method. Preliminary structural analysis using X-rays diffraction pattern and data showed the existence of two phases; orthorhombic (major) and tetragonal (minor impurity/secondary) phase. Analysis of scanning electron micrograph and energy dispersive spectrum of the pellet sample reveals the formation of high density with homogeneously distributed grains of varying dimension. The locations, phonon modes statistics, width and intensity of peaks of Raman spectra of BNT-BT-8 was analyzed by Raman spectroscopy and provided some data on molecular structure of the material. The effect of temperature and frequency on some ferroelectric characteristics of the material were studied. The frequency-temperature dependence of electrical characteristical such as impedance of the material was studied by impedance spectroscopy. The electric conductivity follows the Arrhenius equation and provided activation energy at different frequency. The dielectric and impedance spectroscopy suggest the existence of a non-Debye relaxation mechanism in the material. 相似文献
7.
WO3/Nb2O5-supported samples prepared by impregnation are characterised by X-ray diffraction (XRD), Raman spectroscopy and X-ray absorption spectroscopy (XAS) at the W–L3 absorption edge, as well as temperature programmed reduction (TPR) and FT-IR monitoring of pyridine adsorption. Results are compared with those obtained for WO3/Al2O3 samples prepared in the same conditions, showing that niobia is able to disperse tungsta better than alumina does. Formation of a crystalline WO3 needs larger tungsten contents on niobia than on alumina, since tungsten solution into niobia is easier than into alumina. Raman and XAS spectra recorded under ambient conditions suggest that similar WOx species are formed on both supports at tungsten contents 0.5–1 theoretical monolayers; however, TPR results for the low tungsten loaded samples indicate that, when reduction starts (always at temperatures higher than 700 K under H2/Ar flow) there is a larger concentration of tetrahedral [WO4] species on alumina, than on niobia. Samples with low tungsten loading have been tested in isopropanol decomposition and ethylene oxidation, following both processes by FT-IR of adsorbed species up to 673 K. Results show that adsorption of ethylene on WO3/Nb2O5 yields acetaldehyde and acetate at 473 K, while this adsorption is non-reactive either on the supports or on WO3/Al2O3. Isopropanol adsorbs dissociatively on both supports, leading to acetone and propene formation on tungsta–niobia, but only propene on tungsta–alumina, probably due to the larger reducibility of the tungsten-containing phases. 相似文献
8.
Yizhuan Yan 《The Journal of Supercritical Fluids》2010,55(2):623-634
A thermodynamic model based on the electrolyte NRTL activity coefficient equation and PC-SAFT equation-of-state is developed for CO2 solubility in aqueous solutions of NaCl and Na2SO4 with temperature up to 473.15 K, pressure up to 150 MPa, and salt concentrations up to saturation. The Henry's constant parameters of CO2 in H2O and the characteristic volume parameters for CO2 required for pressure correction of Henry's constant are identified from fitting the experimental gas solubility of CO2 in pure water with temperature up to 473.15 K and pressure up to 150 MPa. The NRTL binary parameters for the CO2-(Na+, Cl−) pair and the CO2-(Na+, SO42−) pair are regressed against the experimental VLE data for the CO2-NaCl-H2O ternary system up to 373.15 K and 20 MPa and the CO2-Na2SO4-H2O ternary system up to 433.15 K and 13 MPa, respectively. Model calculations on solubility and heat of solution of CO2 in pure water and aqueous solutions of NaCl and Na2SO4 are compared to the available experimental data of the CO2-H2O binary, CO2-NaCl-H2O ternary and CO2-Na2SO4-H2O ternary systems with excellent results. 相似文献
9.
实验研究了固相分数为8.2%~23.1%的CO2水合物浆在内径为8 mm的圆管中的流动特性。结果发现水合物浆在管内的流动压降随着流速的增加而增大。当流速低于0.60 m·s-1时,浆体流变指数小于1,且随着固相体积分数的增大而减小,CO2水合物浆为H-B流体,其表观黏度随着流速的增大而减小,呈剪切变稀特性。剪切速率为600 s-1时,CO2水合物浆的表观黏度为8.5~10.6 mPa·s。实验得到了CO2水合物浆的流变特征参数及其流变方程,可为CO2水合物浆的流动及其应用研究提供理论指导。 相似文献
10.
Haruo Arashi 《Journal of the American Ceramic Society》1992,75(4):844-847
The pressure dependence of the Raman spectra of HfO2 was measured by a micro-Raman technique using a singlecrystal specimen in the pressure range from 0 to 10 GPa at room temperature. The symmetry assignment of Raman bands of the monoclinic phase was experimentally accomplished from the polarization measurements for the single crystal. With increased pressure, a phase transformation for the monoclinic phase took place at 4.3 ± 0.3 GPa. Nineteen Raman bands were observed for the high-pressure phase. The spectral structure of the Raman bands for the high-pressure phase was similar with those reported previously for ZrO2 . The space group for the high-pressure phase of HfO2 was determined as Pbcm , which was the same as that of the high-pressure phase for ZrO2 on the basis of the number and the spectral structure of the Raman bands. 相似文献
11.
A series of MgO supported catalysts having Co and Mo metals 5-40 wt.% in a ratio of 1:1 was prepared by impregnation method. Carbon nanotubes (CNTs) were grown over the catalysts by decomposition of C2H2 at 800 °C for 30 min. It was found that 5 and 10 wt.% Co-Mo/MgO catalysts produced single-wall nanotubes (SWNTs), whereas 20, 30 and 40 wt.% Co-Mo/MgO catalysts produced multi-wall nanotubes (MWNTs). The catalyst Mo/MgO was inactive in growing CNTs. In Co-Mo/MgO catalysts, however Mo generated a favorable environment to grow SWNTs. The growth of SWNTs was strongly dependent on the formation of small clusters of cobalt, which may generate from the decomposition of CoMoO4 species during the nanotube growth. MWNTs were produced over comparatively larger cobalt clusters generated from Co3O4 phase during the nanotube growth stage. The yields of SWNTs were about 6% and 27% over 5 and 10 wt.% Co-Mo/MgO catalysts, respectively. MWNTs yield (576%) was observed over 40 wt.% Co-Mo/MgO catalyst. Carbon yield (%) highly varied with acetylene concentration. 相似文献
12.
A combination technique of in situ synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) was employed to study the Li1−xNi0.5Co0.25Mn0.25O2 cathode material for Li-ion battery. The Li/Li1−xNi0.5Co0.25Mn0.25O2 cell with x = 0.82 charged to 4.5 V showed the first charge capacity of 225 mAh/g. The X-ray absorption near edge structure (XANES) indicated that the initial valences were +2/+3, +3 and +4 for Ni, Co and Mn, respectively. The main redox reaction during delithiation was achieved by Ni via the reaction Ni2+ → Ni3+ followed by Ni3+ → Ni4+. The oxidation states of Co and Mn remained Co3+ and Mn4+. The bond length of Ni-O decreased drastically, while the Co-O and Mn-O distances exhibited a slight change with the decrease of Li content in the electrode. It was further revealed that all the second shell metal-metal (Ni-M, Co-M and Mn-O) distances decreased due to the oxidation of metal ions. In situ XRD data showed that both a- and c-axes varied with different Li contents in this material system. At the beginning of charge, there was a contraction along the c-axis and a slight expansion along the a-axis. As x reached 0.57, the trend of the variation in c-axis was opposite. The changes of lattice parameters could be explained by the balance between ionic radius and the repulsive force of the layer-structured material. 相似文献
13.
In this study solid-state NMR spectroscopy was used to identify structure and guest distribution of the mixed N2 + CO2 hydrates. These results show that it is possible to recover CO2 from flue gas by forming a mixed hydrate that removes CO2 preferentially from CO2/N2 gas mixture. Hydrate phase equilibria for the ternary CO2–N2–water system in silica gel pores were measured, which show that the three-phase H–Lw–V equilibrium curves were shifted to higher pressures at a specific temperature when the concentration of CO2 in the vapor phase decreased. 13C cross-polarization (CP) NMR spectra of the mixed hydrates at gas compositions of more than 10 mol% CO2 with the balance N2 identified that the crystal structure of mixed hydrates as structure I, and that the CO2 molecules occupy mainly the abundant 51262 cages. This makes it possible to achieve concentrations of more than 96 mol% CO2 gas in the product after three cycles of hydrate formation and dissociation. 相似文献
14.
Youssef Belmabkhout 《Chemical engineering science》2009,64(17):3729-107
Adsorption equilibrium capacity of CO2, CH4, N2, H2 and O2 on periodic mesoporous MCM-41 silica was measured gravimetrically at room temperature and pressure up to 25 bar. The ideal adsorption solution theory (IAST) was validated and used for the prediction of CO2/N2, CO2/CH4, CO2/H2 binary mixture adsorption equilibria on MCM-41 using single components adsorption data. In all cases, MCM-41 showed preferential CO2 adsorption in comparison to the other gases, in agreement with CO2/N2, CO2/CH4, CO2/H2 selectivity determined using IAST. In comparison to well known benchmark CO2 adsorbents like activated carbons, zeolites and metal-organic frameworks (MOFs), MCM-41 showed good CO2 separation performances from CO2/N2, CO2/CH4 and CO2/H2 binary mixtures at high pressure, via pressure swing adsorption by utilizing a medium pressure desorption process (PSA-H/M). The working CO2 capacity of MCM-41 in the aforementioned binary mixtures using PSA-H/M is generally higher than 13X zeolite and comparable to different activated carbons. 相似文献
15.
Hydroazafullerene C59HN was studied by vibrational infra-red and Raman spectroscopy and its thermal stability was examined. Fingerprints modes were identified and unambiguously differentiate it from bisazafullerene. At 700 K full transformation to bisazafullerene occurred, while an intermediate metastable phase was identified at 540 K showing different spectra where the splitting of most of the lines is strongly reduced. 相似文献
16.
Parameters of gyrolite hydrothermal synthesis were determined when primary mixtures consisting CaO and amorphous SiO2·nH2O or quartz and a sequence of intermediary compound formation were examined and explained. The molar ratio (C/S) of the primary mixtures was 0.66 (C—CaO; S—SiO2) and the water/solid ratio (W/S) of the unstirred suspension was 10. Hydrothermal synthesis was carried out in saturated steam at 150, 175, and 200 °C temperatures. The duration of isothermal curing was 4, 16, 24, 32, 48, 72, and 168 h.Gyrolite does not form even after a week in the mixtures of CaO and amorphous SiO2 at 150 °C temperature in saturated steam. Increase in the temperature positively affects the synthesis of this compound—pure gyrolite at 175 °C was obtained after 72 h at 200 °C—after 32 h. It should be noted that while synthesizing gyrolite, intermediary compounds C-S-H (I) and Z-phase are always formed. The mechanism of hydrothermal reactions and the sequence of compounds to be formed in the mixtures of CaO and quartz are totally different. Due to low quartz solubility rate at temperature range from 150 to 200 °C, neither Z-phase nor gyrolite forms even during 72 h of hydrothermal curing. In the beginning of the synthesis, α-C2S hydrate prevails, which gradually recrystallizes into 1.13 nm tobermorite and xonotlite. Almost half of the quartz reacts during the first 4 h at 150 °C temperature, and the further decrease of its quantity depends much on the duration of hydrothermal curing. However, about 10% of the quartz does not react at all, when the C/S in the products approach approximately 0.8, stable calcium silicate hydrates—1.13 nm tobermorite and xonotlite—are formed. They are relatively stable. Experimentally obtained data and preconditions were approved by thermodynamic calculations. 相似文献
17.
V.P. Pavlovi? J. Krsti? M.J. Š?epanovi? J. Doj?ilovi? D.M. Mini? J. Blanuša S. Stevanovi? V. Miti? V.B. Pavlovi? 《Ceramics International》2011,37(7):2513-2518
In this article, in order to obtain tetragonal nanocrystalline BaTiO3, structural investigations of mechanically activated BaTiO3 powder have been performed. A mercury porosimetry analysis and scanning electron microscopy method have been applied for determination of the specific pore volume, porosity and microstructure morphology of the samples. The lattice vibration spectra of nonactivated and activated powders, their phase composition, lattice microstrains and the mean size of coherently diffracting domains were examined by Raman spectroscopy and the X-ray powder diffraction method. The average crystal structure of obtained nanocrystalline powders, estimated from X-ray diffraction data, gave evidence of retained, but slightly sustained tetragonality of powders, even for particles as small as ∼30 nm. Raman spectroscopy also gave clear evidence for local tetragonal symmetries, in particular through the presence of a band at ∼307 cm−1. 相似文献
18.
Xiaoling Zhu 《Fuel Processing Technology》2010,91(8):837-3149
Raw and demineralized lignite samples were pyrolyzed from 773 to 1673 K to generate chars. The chars were characterized with Raman spectroscopy for the structure evolution. The reactivities of the chars reacting with CO2 and NO were measured with thermogravimetric analysis. The derived reactivity indexes were correlated with the treatment temperature and the Raman structural parameters to demonstrate the applicability of Raman spectroscopy for evaluation of the reactivities of char CO2 gasification and char-NO reaction. It was found that char microstructure evolution with the treatment temperature could be represented by Raman band area ratios. ID1/IG and IG/IALL represented the evolution of the ordered carbon structure while the combination of ID3/(IG + ID2 + ID3) reflected the evolution of the amorphous carbon structure of the lignite chars with increasing the treatment temperature from 773 to 1673 K. Reactivity indexes of the demineralized chars reacting with both CO2 and NO were found to increase with increasing the treatment temperature, implying that the structure ordering did result in the losses of the reactivities. Higher reactivities of the non-demineralized chars indicated the catalytic role of inorganic matter in the reactions with both gases. ID1/IG and IG/IALL had good linear correlations with the reactivities particularly of the demineralized chars if considering the structure evolution behaviors at lower and higher temperatures, respectively. ID3/(IG + ID2 + ID3) was found to have fairly good linear correlations with the reactivity indexes of the lignite chars generated over the whole temperature range. 相似文献
19.
Herein we describe electrochemical and spectroscopic properties of lithium titanate spinel as well as an easy method based on colorimetry to determine the lithium content of electrodes containing lithium titanate spinel as active material. Raman microspectrometry measurements have been performed to follow lithium insertion into and extraction from the active material, respectively. The Raman signals display a pronounced fading of intensity already at low levels of lithium intercalation and disappear at a SOC higher than ∼10%. However, the colorimetric method can be used up to a SOC of 50%. 相似文献
20.
Torben R. Jensen Axel Nrlund Christensen Jonathan C. Hanson 《Cement and Concrete Research》2005,35(12):2300-2309
The hydrothermal transformation of calcium aluminate hydrates were investigated by in situ synchrotron X-ray powder diffraction in the temperature range 25 to 170 °C. This technique allowed the study of the detailed reaction mechanism and identification of intermediate phases. The material CaAl2O4·10H2O converted to Ca3Al2(OH)12 and amorphous aluminum hydroxide. Ca2Al2O5·8H2O transformed via the intermediate phase Ca4Al2O7·13H2O to Ca3Al2(OH)12 and gibbsite, Al(OH)3. The phase Ca4Al2O7·19H2O reacted via the same intermediate phase to Ca3Al2(OH)12 and mainly amorphous aluminum hydroxide. The powder pattern of the intermediate phase is reported. 相似文献