首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于视觉识别的机动车辆智能驾驶系统   总被引:1,自引:0,他引:1  
将机器人视觉原理运用于对机动车辆智能驾驶的研究中,通过识别高速公路车道线的变化,使得车辆能够实现自动驾驶。由CMOS图像传感器摄取道路图像,采用小波处理、线性递推估计、波门跟踪滤波和二次拟合抽取车道线信息,从而得到行驶控制误差;控制命令通过串行232口发送到单片机上,驱动步进电机带动游戏杆转动来仿真实际的自动驾驶过程;获得了很好的实验结果。  相似文献   

2.
We discuss a coordinate-free approach to the geometry of computer vision problems. The technique we use to analyse the three-dimensional transformations involved will be that of geometric algebra: a framework based on the algebras of Clifford and Grassmann. This is not a system designed specifically for the task in hand, but rather a framework for all mathematical physics. Central to the power of this approach is the way in which the formalism deals with rotations; for example, if we have two arbitrary sets of vectors, known to be related via a 3D rotation, the rotation is easily recoverable if the vectors are given. Extracting the rotation by conventional means is not as straightforward. The calculus associated with geometric algebra is particularly powerful, enabling one, in a very natural way, to take derivatives with respect to any multivector (general element of the algebra). What this means in practice is that we can minimize with respect to rotors representing rotations, vectors representing translations, or any other relevant geometric quantity. This has important implications for many of the least-squares problems in computer vision where one attempts to find optimal rotations, translations etc., given observed vector quantities. We will illustrate this by analysing the problem of estimating motion from a pair of images, looking particularly at the more difficult case in which we have available only 2D information and no information on range. While this problem has already been much discussed in the literature, we believe the present formulation to be the only one in which least-squares estimates of the motion and structure are derived simultaneously using analytic derivatives.  相似文献   

3.
A central task of computer vision is to automatically recognize objects in real-world scenes. The parameters defining image and object spaces can vary due to lighting conditions, camera calibration and viewing position. It is therefore desirable to look for geometric properties of the object which remain invariant under such changes in the observation parameters. The study of such geometric invariance is a field of active research. This paper presents the theory and computation of projective invariants formed from points and lines using the geometric algebra framework. This work shows that geometric algebra is a very elegant language for expressing projective invariants using n views. The paper compares projective invariants involving two and three cameras using simulated and real images. Illustrations of the application of such projective invariants in visual guided grasping, camera self-localization and reconstruction of shape and motion complement the experimental part.  相似文献   

4.
In this paper the authors introduce the conformal geometric algebra in the field of visually guided robotics. This mathematical system keeps our intuitions and insight of the geometry of the problem at hand and it helps us to reduce considerably the computational burden of the problems. As opposite to the standard projective geometry, in conformal geometric algebra we can deal simultaneously with incidence algebra operations (meet and join) and conformal transformations represented effectively using spinors. In this regard, this framework appears promising for dealing with kinematics, dynamics and projective geometry problems without the need to resort to different mathematical systems (as most current approaches do). This paper presents real tasks of perception and action, treated in a very elegant and efficient way: body–eye calibration, 3D reconstruction and robot navigation, the computation of 3D kinematics of a robot arm in terms of spheres, visually guided 3D object grasping making use of the directed distance and intersections of lines, planes and spheres both involving conformal transformations. We strongly believe that the framework of conformal geometric algebra can be, in general, of great advantage for applications using stereo vision, range data, laser, omnidirectional and odometry based systems. Eduardo Jose Bayro-Corrochano gained his Ph.D. in Cognitive Computer Science in 1993 from the University of Wales at Cardiff. From 1995 to 1999 he has been Researcher and Lecturer at the Institute for Computer Science, Christian Albrechts University, Kiel, Germany, working on applications of geometric Clifford algebra to cognitive systems.  His current research interest focuses on geometric methods for artificial perception and action systems. It includes geometric neural networks, visually guidevsd robotics, color image processing, Lie bivector algebras for early vision and robot maneuvering. He is editor and author of the following books: Geometric Computing for Perception Action Systems, E. Bayro-Corrochano, Springer Verlag, 2001; Geometric Algebra with Applications in Science and Engineering, E. Bayro-Corrochano and G. Sobczyk (Eds.), Birkahauser 2001; Handbook of Computational Geometry for Pattern Recognition, Computer Vision, Neurocomputing and Robotics, E. Bayro-Corrochano, Springer Verlag, 2005. He authored more than 90 strictly reviewed papers. Leo Hendrick Reyes-Lozano received his degree in Computer Engineering from the University of Guadalajara in 1999. He earned his MSc. and Ph.D. from the Center of Research and Advanced Studies (CINVESTAV) Guadalajara in 2001 and 2004, respectively. His research interests include Computer Vision, Geometric Algebra and Computer Graphics. Julio Zamora-Esquivel received his degree in Electronic Engineering at the Guzman City Institute of Tecnology in 2000. He earned his MSc. at the Center of Research and Advanced Studies (CINVESTAV) in Guadalajara in 2003. He is currently a Ph.D Candidate at CINVESTAV. His research interests include Computer Vision, Geometric Algebra and Robotics.  相似文献   

5.
In this paper we investigate, determine and classify the critical configurations for solving structure and motion problems for 1D retina vision. We give a complete categorization of all ambiguous configurations for a 1D (calibrated or uncalibrated) perspective camera irrespective of the number of points and views. It is well-known that the calibrated and uncalibrated case are linked through the circular points. This link enables us to solve for both cases simultaneously. Another important tool is the duality in exchanging points and cameras and its corresponding Cremona transformation. These concepts are generalized to the 1D case and used for the investigation of ambiguous configurations. Several examples and illustrations are also provided to explain the results and to provide geometrical insight.  相似文献   

6.
基于直线光流场的三维运动和结构重建   总被引:2,自引:0,他引:2  
利用直线间运动对应关系,将像素点光流的概念和定义方法应用于直线,提出了直线光流的概念,建立了求解空间物体运动参数的线性方程组,利用三幅图像21条直线的光流场,可以求得物体运动的12个参数以及空间直线坐标.但是在实际应用当中,要找出这21条直线的光流场是很困难的,因此该文提出了运用解非线性方程组的方法,只需要6条直线的光流.就可以分步求出物体的12个运动参数,并根据求得的12个运动参数和一致的图像坐标系中的直线坐标,求得空间直线的坐标,从而实现了三维场景的重建.  相似文献   

7.
针对变压器熔断器人工更换工作量大、安全性低的问题,该文设计开发了融合3D视觉的机器人自主更换变压器熔断器系统。该系统以协作机器人为基础,将彩色3D深度相机以eye-in-hand方式与机器人有机结合。采用变压器熔断器作业3D实景还原、自动避障作业技术,实现机器人更换熔断器自主作业。通过在国家电网内部试验场地测试,证明该系统可以替代检修人员进行无人作业,机器人可以安全、高效地完成变压器熔断器更换。  相似文献   

8.
In this paper we investigate the structure and motion problem for calibrated one-dimensional projections of a two-dimensional environment. The theory of one-dimensional cameras are useful in several areas, e.g. within robotics, autonomous guided vehicles, projection of lines in ordinary vision and vision of vehicles undergoing so called planar motion. In a previous paper the structure and motion problem for all cases with non-missing data was classified and solved. Our aim is here to classify all structure and motion problems, even those with missing data, and to solve them. In the classification we introduce the notion of a prime problem. A prime problem is a minimal problem that does not contain a minimal problem as a sub-problem. We further show that there are infinitely many such prime problems. We give solutions to four prime problems, and using the duality of Carlsson these can be extended to solutions of seven prime problems. Finally we give some experimental results based on synthetic data.  相似文献   

9.
智能交通系统中的计算机视觉技术应用   总被引:9,自引:0,他引:9  
随着经济的发展,如何保障交通的顺畅与安全已成为世界性的热点研究课题之一。文章对智能交通系统进行了分析,并着重讨论了计算机视觉技术在智能交通系统中的应用。提出了一种基于背景差的车辆检测算法,在灰度图像序列中对六条车道同时进行监测,以统计各车道的车流量,并按大中小三种车型对过往车辆进行车型识别。  相似文献   

10.
计算机视觉中的设备标定和三维图形重构综述   总被引:15,自引:0,他引:15  
这篇文章回顾了计算机视觉中的设备标定方法和三维重构的多种方法,介绍了各种方法的基本思想和特点,并对它们进行了相应的分析和比较。提出了现有的理论和方法在工程应用中存在的问题以及该学科研究和发展的动态。  相似文献   

11.
三维重构建模是计算机视觉技术的主要内容之一。相机内外参数的标定、图像特征点的提取以及特征点的立体匹配是三维重构建模的技术核心。本文总结了近来三维重构建模的研究成果和计算方法,并提出了一些观点,对三维重构建模的难点和发展趋势作了说明。  相似文献   

12.
智能交通监控是计算机视觉技术的重要应用之一。对行驶中的车辆进行自动跟踪,能够得到车辆的动态信息,为交通部门提供重要依据。Mean—Shift跟踪算法和基于PPM质心迭代跟踪算法对运动目标的跟踪具有很好的效果,应用两种算法对运动车辆进行跟踪,并对两种算法在车辆跟踪过程中稳定性、精度和实时性上做了对比分析。  相似文献   

13.
基于计算机视觉高速智能车辆的道路识别   总被引:18,自引:0,他引:18  
论文研究了基于计算机视觉高速智能车辆的道路识别。通过对JLUIV-4智能高速车辆系统采集的图像进行中值滤波、边缘增强、最优阈值二值化,获得良好的梯度图像。根据道路特征采用Hough变换识别出道路边界。使用感兴趣区域,减少图像处理时间和提高道路识别的可靠性。JLUIV-4的高速导航实验表明,该算法具有良好的实时性、可靠性和鲁棒性。  相似文献   

14.
简单介绍了全自主足球机器人比赛系统。设计了全自主足球机器人视觉系统的典型电路,包括CCD摄像头、SAA7111、AL422B、EPM7128及TMS320VC5402,并详细分析了系统的时序关系。给出了典型电路的变型设计,并进行了比较。  相似文献   

15.
The aim of this work is the recovery of 3D structure and camera projection matrices for each frame of an uncalibrated image sequence. In order to achieve this, correspondences are required throughout the sequence. A significant and successful mechanism for automatically establishing these correspondences is by the use of geometric constraints arising from scene rigidity. However, problems arise with such geometry guided matching if general viewpoint and general structure are assumed whilst frames in the sequence and/or scene structure do not conform to these assumptions. Such cases are termed degenerate.In this paper we describe two important cases of degeneracy and their effects on geometry guided matching. The cases are a motion degeneracy where the camera does not translate between frames, and a structure degeneracy where the viewed scene structure is planar. The effects include the loss of correspondences due to under or over fitting of geometric models estimated from image data, leading to the failure of the tracking method. These degeneracies are not a theoretical curiosity, but commonly occur in real sequences where models are statistically estimated from image points with measurement error.We investigate two strategies for tackling such degeneracies: the first uses a statistical model selection test to identify when degeneracies occur: the second uses multiple motion models to overcome the degeneracies. The strategies are evaluated on real sequences varying in motion, scene type, and length from 13 to 120 frames.  相似文献   

16.
In this paper we apply the Clifford geometric algebra for solving problems of visually guided robotics. In particular, using the algebra of motors we model the 3D rigid motion transformation of points, lines and planes useful for computer vision and robotics. The effectiveness of the Clifford algebra representation is illustrated by the example of the hand-eye calibration. It is shown that the problem of the hand-eye calibration is equivalent to the estimation of motion of lines. The authors developed a new linear algorithm which estimates simultaneously translation and rotation as components of rigid motion.  相似文献   

17.
计算机视觉系统框架结构研究   总被引:3,自引:0,他引:3  
计算机视觉系统框架的研究对计算机视觉是十分重要的,它指导着计算机视觉的发展方向。文章对计算机视觉发展几十年来在系统结构框架方面(主要是三维重建理论框架和主动视觉理论框架)所取得的研究进行了回顾和总结,并在前人所取得的成果之上,根据现有的实际情况,对原有框架结构进行了一些补充,同时对计算机视觉系统框架提出一些新的看法。  相似文献   

18.
共形几何代数与运动和形状的刻画   总被引:2,自引:0,他引:2  
共形几何代数在基于运动和形状刻画的视觉和图形学若干问题中的应用,反映了它能够提供统一和有效的表示和算法,这些应用主要集中在采纳几何体的Grassmann分级表示以及刚体运动的旋量和扭量表示.着重介绍了Grassmann分级表示如何被应用于单眼视觉问题并带来解决方法的简化;通过对刚体运动不同表示的分析,介绍旋量和扭量表示如何克服刚体运动蹬矩阵表示中参数空间具有过多非线性约束的缺点,从而为姿态估计、形状逼近和曲线拼接等问题的解决提供简化方案.  相似文献   

19.
In this paper the motor algebra for linearizing the 3D Euclidean motion of lines is used as the oretical basis for the development of a novel extended Kalman filter called the motor extended Kalman filter (MEKF). Due to its nature the MEKF can be used as online approach as opposed to batch SVD methods. The MEKF does not encounter singularities when computing the Kalman gain and it can estimate simultaneously the translation and rotation transformations. Many algorithms in the literature compute the translation and rotation transformations separately. The experimental part demonstrates that the motor extended Kalman filter is an useful approach for estimation of dynamic motion problems. We compare the MEKF with an analytical method using simulated data. We present also an application using real images of a visual guided robot manipulator; the aim of this experiment is to demonstrate how we can use the online MEKF algorithm. After the system has been calibrated, the MEKF estimates accurately the relative position of the end-effector and a 3D reference line. We believe that future vision systems being reliably calibrated will certainly make great use of the MEKF algorithm.  相似文献   

20.
The authors of this paper adopted the projected characteristics of the absolute conic in terms of the Pascal's theorem to propose an entirely new camera calibration method based on purely geometric thoughts. The use of this theorem in the geometric algebra framework allows us to compute a projective invariant using the conics of only two images which expressed using brackets helps us to set enough equations to solve the calibration problem. The method requires restricted controlled camera movements. Our method is less sensitive to noise as the Kruppa's-equation-based methods. Experiments with simulated and real images confirm that the performance of the algorithm is reliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号