共查询到20条相似文献,搜索用时 0 毫秒
1.
Our goal was to determine the effect of systematically controlled variation in milk fat, true protein, casein, and serum protein concentrations on the sensory color, flavor and texture properties, instrumental color and viscosity, and milk fat globule size distribution of milk-based beverages. Beverage formulations were based on a complete balanced 3-factor (fat, true protein, and casein as a percentage of true protein) design with 3 fat levels (0.2, 1.0, and 2.0%), 4 true protein (TP) levels (3.00, 3.67, 4.34, and 5.00%) within each fat level, and 5 casein as a percentage of true protein (CN%TP) levels (5, 25, 50, 75, and 80%) within each protein level (for a total of 60 formulations within each of 2 replicates). Instrumental measures of Hunter L and a values and Commission Internationale de l'Éclairage (CIE) b* values, instrumental viscosity, particle size, flavor, sensory texture and sensory appearance evaluations were done on each pasteurized/homogenized beverage formulation. Within each of the 3 fat levels, higher serum protein concentration drove higher aroma intensity, sweet aromatic, cooked/sulfur, cardboard/doughy flavors, and sensory yellowness scores, whereas higher casein concentration drove higher instrumental viscosity in milk protein beverages. Increasing serum protein concentration increased yellowness, sweet aromatic, aroma intensity, cooked/sulfur, and cardboard/doughy flavors across all fat levels and also had the largest effect on L, a, and b* values, sensory whiteness, and opacity within each fat level. Increases in true protein increased throat cling and astringency intensities. Increases in fat concentration were correlated with higher L, a, and b* values, larger particle size, and increased sensory whiteness, mouth coating, cooked/milky, and milkfat flavors. Multiple linear regression of L, a, and b* values produced better predictions of sensory whiteness and yellowness of pasteurized milk protein beverages than simple linear regression of L or b* values, respectively. Formulating milk protein beverages to a higher true protein level increased astringency regardless of fat level. When formulating milk protein beverages, a product developer has a wide range of milk-based protein ingredient choices that differ in price and change price relationship across time. Understanding the expected relative effect of different milk protein ingredients on the textural and flavor characteristics of milk-based beverages could be used to help guide product reformulation decisions and ingredient choices to achieve a specific sensory profile while controlling total beverage ingredient cost. 相似文献
2.
《Journal of dairy science》2023,106(6):3884-3899
Our objective was to determine the effect of addition of dipotassium phosphate (DKP) at 3 different thermal treatments on color, viscosity, and sensory properties of 7.5% milk protein-based beverages during 15 d of storage at 4°C. Micellar casein concentrate (MCC) and milk protein concentrate (MPC) containing about 7.5% protein were produced from pasteurized skim milk using a 3×, 3-stage ceramic microfiltration process and a 3×, 3-stage polymeric ultrafiltration membrane process, respectively. The MCC and MPC were each split into 6 batches, based on thermal process and addition of DKP. The 6 batches were no postfiltration heat treatment with added DKP (0.15%), no postfiltration heat without added DKP (0%), postfiltration high-temperature, short time (HTST) with DKP, postfiltration HTST without DKP, postfiltration direct steam injection with DKP, and postfiltration direct steam injection without DKP. The 6 MCC milk-based beverages and the 6 MPC milk-based beverages were stored at 4°C. Viscosity, color, and sensory properties were determined over 15 d of refrigerated storage. MCC- and MPC-based beverages at 7.5% protein with and without 0.15% added dipotassium phosphate were successfully run through an HTST and direct steam injection thermal process. The 7.5% protein MCC-based beverage contained a higher calcium and phosphorus content (2,425 and 1,583 mg/L, respectively) than the 7.5% protein MPC-based beverages (2,141 and 1,338 mg/L, respectively). Pasteurization (HTST) had very little effect on beverage particle size distribution, whereas direct steam injection thermal processing produced protein aggregates with medians in the range of 10 and 175 μm for MPC beverages. A population of casein micelles at about 0.15 μm was found in both MCC- and MPC-based beverages. Larger particles in the 175-μm range were not detected in the MCC beverages. In general, the apparent viscosity (AV) of MCC beverages was higher than MPC beverages. Added DKP increased the AV of both MCC- and MPC-based beverages, while increasing heat treatment decreased AV. The AV of beverages with DKP increased during 15 d of 4°C of storage for both MCC and MPC, whereas there was very little change in AV during storage without DKP and a similar effect was observed for sensory viscosity scores. The L value of beverages was higher with higher heat treatment, but DKP addition decreased L value and sensory opacity greatly. Sulfur-eggy flavors were detected in MPC beverages, but not MCC-based beverages. 相似文献
3.
《Journal of dairy science》2021,104(10):10640-10653
This study evaluated the role of protein concentration and milk protein ingredient [serum protein isolate (SPI), micellar casein concentrate (MCC), or milk protein concentrate (MPC)] on sensory properties of vanilla ready-to-drink (RTD) protein beverages. The RTD beverages were manufactured from 5 different liquid milk protein blends: 100% MCC, 100% MPC, 18:82 SPI:MCC, 50:50 SPI:MCC, and 50:50 SPI:MPC, at 2 different protein concentrations: 6.3% and 10.5% (wt/wt) protein (15 or 25 g of protein per 237 mL) with 0.5% (wt/wt) fat and 0.7% (wt/wt) lactose. Dipotassium phosphate, carrageenan, cellulose gum, sucralose, and vanilla flavor were included. Blended beverages were preheated to 60°C, homogenized (20.7 MPa), and cooled to 8°C. The beverages were then preheated to 90°C and ultrapasteurized (141°C, 3 s) by direct steam injection followed by vacuum cooling to 86°C and homogenized again (17.2 MPa first stage, 3.5 MPa second stage). Beverages were cooled to 8°C, filled into sanitized bottles, and stored at 4°C. Initial testing of RTD beverages included proximate analyses and aerobic plate count and coliform count. Volatile sulfur compounds and sensory properties were evaluated through 8-wk storage at 4°C. Astringency and sensory viscosity were higher and vanillin flavor was lower in beverages containing 10.5% protein compared with 6.3% protein, and sulfur/eggy flavor, astringency, and viscosity were higher, and sweet aromatic/vanillin flavor was lower in beverages with higher serum protein as a percentage of true protein within each protein content. Volatile compound analysis of headspace vanillin and sulfur compounds was consistent with sensory results: beverages with 50% serum protein as a percentage of true protein and 10.5% protein had the highest concentrations of sulfur volatiles and lower vanillin compared with other beverages. Sulfur volatiles and vanillin, as well as sulfur/eggy and sweet aromatic/vanillin flavors, decreased in all beverages with storage time. These results will enable manufacturers to select or optimize protein blends to better formulate RTD beverages to provide consumers with a protein beverage with high protein content and desired flavor and functional properties. 相似文献
4.
5.
B. Kung G.H. Anderson S. Paré A.J. Tucker S. Vien A.J. Wright H.D. Goff 《Journal of dairy science》2018,101(10):8688-8701
Whey and casein proteins differentially affect postprandial blood glucose and satiety mechanisms, with relevance for type 2 diabetes and obesity. Therefore, the purpose of this work was to investigate the effect of the casein-to-whey protein ratio and total protein concentration of milks consumed with cereal on postprandial blood glucose, appetite ratings, and subsequent food intake in a randomized, controlled, double-blinded study with healthy young adults (n = 32, 23.4 ± 3.1 yr, body mass index = 22.2 ± 2.5 kg/m2). Fasted participants consumed milk (250 mL) with either 80:20 or 40:60 (modified) casein-to-whey protein ratios at commercially normal (3.1%, wt) or high protein (9.3%, wt) concentration, or control (water with whey permeate), each along with 2 servings of oat-based breakfast cereal. Blood glucose concentrations were determined from finger prick blood samples and appetite was assessed using visual analog scales. Participants consumed a measured ad libitum pizza lunch at 120 min and blood glucose determination and appetite assessment continued following the lunch meal (140–200 min) to observe the second meal effect. Pre-lunch (0–120 min) incremental area under the curve (iAUC) and mean change from baseline blood glucose were reduced with consumption of all milk treatments relative to control. However, we found no differences between all treatments on pre-lunch appetite change from baseline and total area under the curve (tAUC) or lunch meal food intake. In terms of protein concentration results, high protein (9.3%, wt) treatments contrasted to normal protein (3.1%, wt) treatments lowered blood glucose change from baseline and iAUC, and post-lunch appetite change from baseline and tAUC. Protein ratio showed a modest effect in that modified (40:60) protein ratio lowered pre-lunch blood glucose change from baseline but not iAUC, and normal (80:20) protein ratio lowered pre-lunch appetite change from baseline but not tAUC. Therefore, high-carbohydrate breakfast meals with increased protein concentration (9.3%, wt) could be a dietary strategy for the attenuation of blood glucose and improved satiety ratings after the second meal. 相似文献
6.
以黄豆、红枣粉、红豆粉和枸杞粉为植物蛋白饮料的主要原辅料,研究此植物蛋白饮料的配方及其理化性质。以感官评价为指标,通过单因素实验和正交实验,考察了黄豆与辅料(红枣粉、红豆粉和枸杞粉)总量比、料水比、蔗糖添加量、奶粉添加量、红枣:红豆:枸杞的质量之比等对感官品质的影响。通过稳定系数和离心沉淀率,考察了复合乳化剂和复合增稠剂对产品稳定性的影响。通过测定产品的营养成分、色泽、粒径、流变学特性,研究了植物蛋白饮料的理化特性。结果表明:植物蛋白饮料最佳配方为:黄豆与辅料(红枣、红豆和枸杞)总量比为7:3,料水比为1:10(g/mL),蔗糖添加量7%,奶粉添加量1%,红枣:红豆:枸杞之比为2:5:3。复合乳化剂的最佳配比为蔗糖酯:单甘酯=3:4,最适添加量为0.16%;复合增稠剂的最佳配比为海藻酸丙二醇酯:海藻酸钠:瓜儿豆胶=2:1:3,最适添加量为0.065%。采用该配方得到的蛋白饮料呈淡黄色、口感顺滑、具有奶香味。最终获得的产品含有2.14%的蛋白质、0.95%的脂肪、13.57%的可溶性固形物、0.92%的还原糖;样品粒径平均值为303.33 nm,平均分散系数为0.24,属于典型非牛顿流体。 相似文献
7.
《Journal of dairy science》2022,105(1):72-82
Shelf-stable cultured milk beverages that have high protein levels can be difficult to successfully manufacture. With increasing protein level, rapid phase separation and gel formation occur in cultured beverages, which may not be prevented even with the inclusion of stabilizers such as high methoxy (HM) pectin. To limit protein aggregation in cultured milk beverages we investigated micellar casein as an interesting alternative to milk, due to the absence of whey proteins, which can contribute to increased gel strength in cultured products. In this study, micellar casein dispersed in ultrafiltered milk permeate was fermented to pH 4.1, blended with HM pectin, homogenized, thermally processed, and bottled for storage at ambient temperature for 6 mo. Utilizing response surface methodology with a central composite rotatable design, the protein and pectin contents were varied between 5 and 9% and 0.0 and 1.0%, respectively. The elastic modulus, loss tangent, and yield stress of these beverages were measured during storage to observe the extent of bond restructuring, whereas particle size and visual phase separation were measured to determine stability. Response variables were measured initially after thermally processing the beverages, and after 1 and 6 mo of storage at ambient temperature. All samples quickly formed gels after homogenizing, regardless of the pectin level. The stiffness (elastic modulus) of all samples increased throughout storage and was determined mainly by the protein content; however, the growth of elastic bonds over time was slowed with high levels of pectin. At 6 mo of storage, yield stress values were significantly lower for beverages with <7.5% protein when they were stabilized with ≥0.85% pectin. Prediction models for visual phase separation in beverages stored for 6 mo were significantly affected by the protein content, with increasing instability at lower protein levels. Models were used to identify optimal protein (<7.5%) and pectin (≥0.85%) concentrations to minimize the stiffness of gels during ambient storage. Samples in this optimized region were predicted to have low yield stress values and were easily fluidized by gentle shaking of the bottle at 6 mo. 相似文献
8.
分别利用Lowry、BCA和Bradford三种方法对母乳中总蛋白、乳清蛋白和酪蛋白的含量进行了测定,并以凯氏定氮法为标准,对三种方法的检测结果进行了比较。结果表明Lowry和Bradford法适用于母乳中总蛋白含量的测定,Lowry法适于母乳中乳清蛋白含量的测定,Lowry、BCA和Bradford三种方法均适用于母乳中酪蛋白含量的测定。采用上述方法,只需要4 m L母乳样本,1.5 h内即可完成母乳总蛋白、乳清蛋白和酪蛋白的微量、高通量快速测定。上述方法适用于较大量母婴营养状况的调查研究,可为母乳化婴幼儿配方乳粉的研制以及促进婴幼儿生长发育提供科学依据。 相似文献
9.
Over a 14-month period, bulk tank milk was collected twice a week and was adjusted with cream and skim milk powder to provide six levels each of fat and protein varying from 3·0 to 4·0%. Milk samples were analyzed for total solids, fat, protein, casein, lactose and somatic cell count and were used for laboratory-scale cheesemaking. Data obtained from the milk input and the cheese output were used to determine actual, moisture adjusted, theoretical yield, and efficiency of yield. Least squares analyses of data indicated that higher cheese yields were obtained from higher fat and protein contents in milk. Higher yield efficiency was associated with higher ratios of protein to fat and casein to fat. Regression analysis indicated that a percentage increase in fat content in milk resulted in an increase of 1·23–1·37% in moisture adjusted yield in the different protein levels. For a similar increase of protein in milk, there were 1·80–2·04% increase in moisture adjusted yields in different fat levels. 相似文献
10.
11.
The introduction of new products catering to specific dietary needs and the corresponding changes in the consumer profile reflect a growing demand for diet and “light” products. However, little information is available regarding the sensory effects of different sweeteners in products consumed at different temperatures and with varying fat contents. In this regard, this study aimed to determine the influence of temperature and fat content on the ideal sucrose concentration and the sweetness equivalence and sweetening power of different sweeteners: Neotame (NutraSweet Corp., Chicago, IL), aspartame, neosucralose, sucralose, and stevia (95% rebaudioside A), with sucrose as reference, in a chocolate milk beverage using a just-about-right (JAR) scale and magnitude estimation. Increasing temperature of consumption had an inverse effect on the ideal sucrose concentration in whole milk beverages, whereas no difference was noted in beverages made skim milk. In addition, a decrease in sweetening power was observed for all of the sweeteners analyzed considering the same conditions. The findings suggest that different optimal conditions exist for consumption of chocolate milk beverage related to sweetness perception, which depends on the fat level of milk used in the formulation. This information can be used by researchers and dairy processors when developing chocolate milk beverage formulations. 相似文献
12.
13.
Effects of breed and casein genetic variants on protein profile in milk from Swedish Red,Danish Holstein,and Danish Jersey cows 总被引:1,自引:0,他引:1
F. Gustavsson A.J. Buitenhuis M. Johansson H.P. Bertelsen M. Glantz N.A. Poulsen H. Lindmark Månsson H. Stålhammar L.B. Larsen C. Bendixen M. Paulsson A. Andrén 《Journal of dairy science》2014
In selecting cows for higher milk yields and milk quality, it is important to understand how these traits are affected by the bovine genome. The major milk proteins exhibit genetic polymorphism and these genetic variants can serve as markers for milk composition, milk production traits, and technological properties of milk. The aim of this study was to investigate the relationships between casein (CN) genetic variants and detailed protein composition in Swedish and Danish dairy milk. Milk and DNA samples were collected from approximately 400 individual cows each of 3 Scandinavian dairy breeds: Swedish Red (SR), Danish Holstein (DH), and Danish Jersey (DJ). The protein profile with relative concentrations of α-lactalbumin, β-lactoglobulin, and αS1-, αS2-, κ-, and β-CN was determined for each milk sample using capillary zone electrophoresis. The genetic variants of the αS1- (CSN1S1), β- (CSN2), and κ-CN (CSN3) genes for each cow were determined using TaqMan SNP genotyping assays (Applied Biosystems, Foster City, CA). Univariate statistical models were used to evaluate the effects of composite genetic variants, αS1-β-κ-CN, on the protein profile. The 3 studied Scandinavian breeds differed from each other regarding CN genotypes, with DH and SR having similar genotype frequencies, whereas the genotype frequencies in DJ differed from the other 2 breeds. The similarities in genotype frequencies of SR and DH and differences compared with DJ were also seen in milk production traits, gross milk composition, and protein profile. Frequencies of the most common composite αS1-β-κ-CN genotype BB/A2A2/AA were 30% in DH and 15% in SR, and cows that had this genotype gave milk with lower relative concentrations of κ- and β-CN and higher relative concentrations of αS-CN, than the majority of the other composite genotypes in SR and DH. The effect of composite genotypes on relative concentrations of the milk proteins was not as pronounced in DJ. The present work suggests that a higher frequency of BB/A1A2/AB, together with a decrease in BB/A2A2/AA, could have positive effects on DH and SR milk regarding, for example, the processing of cheese. 相似文献
14.
Effect of casein and propionate supply on mammary protein metabolism in lactating dairy cows 总被引:1,自引:0,他引:1
The effects of casein (CN) and propionate (C3) on mammary AA metabolism were determined in 3 multiparous Holstein cows fitted with both duodenal and ruminal cannulas and used in a replicated Youden square with six 14-d periods. Casein (743 g/d in the duodenum) and C3 (1,041 g/d in the rumen) infusions were tested in a factorial arrangement. For each period, l-[1-13C]Leu (d 11) and NaH[13C]O3 (d 13) were infused into a jugular vein, and blood samples were taken from the carotid artery and the mammary vein to determine Leu kinetics and net uptake of AA. Both CN and C3 treatments separately increased milk protein concentration and yield. With CN there was a general response in mammary protein metabolism, involving increases in Leu net uptake (30%), the uptake:output ratio (8%), protein synthesis (11%), secretion in milk protein (21%), and oxidation (259%). In contrast, C3 treatments tended to increase only Leu in milk protein (7%) and, when in combination with CN, to reduce Leu used for protein synthesis (5%). Across all treatments, most Leu uptake by the mammary gland was accounted for as Leu in milk or oxidized, and the Leu balance was therefore achieved without involvement of either net peptide use or production. Mammary uptake of group 1 AA increased to match milk output with all infusions. In contrast, mammary uptake of group 2 AA exceeded output to a greater extent with CN than with C3 infusions, whereas the increment in uptake of group 3 AA increased with C3 treatments. Overall, these data suggest that different mechanisms operate to improve milk protein production when either protein or energy is supplied. 相似文献
15.
Giorgia Stocco Michele Pazzola Maria L. Dettori Pietro Paschino Giovanni Bittante Giuseppe M. Vacca 《Journal of dairy science》2018,101(11):9693-9702
The present study investigated the effect of different levels of fat, protein, and casein on (1) traditional milk coagulation properties, and (2) curd firming over time parameters of 1,272 goat milk samples. Relationships between fat, protein, and casein and some indicators of udder health status (lactose, pH, somatic cells, bacterial count, and NaCl) were also investigated. Traditional milk coagulation properties and modeled curd-firming parameters were analyzed using a mixed model that considered the effect of days in milk, parity, farm, breed, the pendulum of the instrument, and different levels of fat, protein, and casein. Fat, protein, and casein were also tested with the same model but one at a time. Information provided by this model demonstrated the effect of one component alone, without contemporarily considering that of the others. The results allowed us to clarify the effect of the major milk nutrients on coagulation, curd firming, and syneresis ability of goat milk. In particular, milk rich in fat was associated with better coagulation properties, whereas milk rich in protein was associated with delayed coagulation. The high correlation of fat with protein and casein contents suggests that the effect of fat on the cheese-making process is also attributable to the effects of protein and casein. When only protein or only casein was included in the statistical model, the pattern of coagulation, curd firming, and syneresis was almost indistinguishable. The contemporary inclusion of protein and casein in the statistical model did not generate computing problems and allowed us to better characterize the role of protein and casein. Consequently, given their strong association, we also tested the effect of casein-to-protein ratio (i.e., casein number). Higher values of casein number led to a general improvement in the coagulation ability of milk, suggesting that casein-to-protein ratio, not just protein or casein, should be considered when milk is destined for cheese making. These results are especially useful for dairy farmers who want to increase their profits by improving the technological quality of the milk produced. 相似文献
16.
Serum protein and casein concentration: effect on pH and freezing point of milk with added CO2 总被引:1,自引:0,他引:1
The objective of this study was to determine the effect of protein concentration and protein type [i.e., casein (CN) and serum protein (SP)] on pH (0 degree C) and freezing point (FP) of skim milk upon CO2 injection at 0 degree C. CN-free skim milks with increasing SP content (0, 3, and 6%) and skim milks with the same SP content (0.6%) but increasing CN content (2.4, 4.8, and 7.2%) were prepared using a combination of microfiltration and ultrafiltration processes. CO2 was injected into milks at 0 degree C using a continuous flow carbonation unit (230 ml/min). Increasing SP or CN increased milk buffering capacity and protein-bound mineral content. At the same CO2 concentration at 0 degree C, a milk with a higher SP or a higher CN concentration had more resistance to pH change and a greater extent of FP decrease. The buffering capacity provided by an increase of CN was contributed by both the CN itself and the colloidal salts solublized into the serum phase from CN upon carbonation. Skim milks with the same true protein content (3%), one with 2.4% CN plus 0.6% SP and one with 3% SP, were compared. At the same true protein content (3%), increasing the proportion of CN increased milk buffering capacity and protein-bound mineral content. Milk with a higher proportion of CN had more resistance to pH change and a greater extent of FP decrease at the same carbonation level at 0 degree C. Once CO2 was dissolved in the skim portion of a milk, the extent of pH reduction and FP depression depended on protein concentration and protein type (i.e., CN and SP). 相似文献
17.
Jagoda O. Szafrańska Bartosz G. Sołowiej 《International Journal of Food Science & Technology》2020,55(5):1971-1979
The objective of this study was the evaluation of different fibres (bamboo, acacia, potato or citrus) addition on texture, rheological and sensory properties of acid casein processed cheese sauces. Fibres used in production of sauces had an impact on the texture, viscosity, viscoelastic and sensory properties. The largest increase in viscosity was observed in products with addition of potato fibre, which have good water holding and adsorption capacity. Processed cheese sauce with the addition of citrus fibre was characterised by the highest values in general, and the increase of this feature in the tested samples was regular. Adhesiveness was the highest in products with 1% addition of every fibre. The lowest values of viscosity single shear, G′ and G″ moduli, among all tested, had sauces with acacia fibre. Moreover, they had the most thin liquid consistency, which was different from preferred one. 相似文献
18.
Wedholm A Møller HS Stensballe A Lindmark-Månsson H Karlsson AH Andersson R Andrén A Larsen LB 《Journal of dairy science》2008,91(10):3787-3797
The objective of this work was to find regressions between minor milk proteins or protein fragments in the casein or sweet whey fraction and cheese yield because the effect of major milk proteins was evaluated in a previous study. Proteomic methods involving 2-dimensional gel electrophoresis and mass spectrometry in combination with multivariate data analysis were used to study the effect of variations in milk protein composition in chymosin separated whey and casein fractions on cheese yield. By mass spectrometry, a range of proteins significant for the cheese yield was identified. Among others, a C-terminal fragment of β-casein had a positive effect on the cheese yield expressed as grams of cheese per 100 g of milk, whereas several other minor fragments of β-, αs1-, and αs2-casein had positive effects on the transfer of protein from milk to cheese. However, the individual effect of each identified protein was relatively low. Therefore, further studies of the relations between different proteins/peptides in the rennet casein or sweet whey fractions and cheese yield are needed for advanced understanding and prediction of cheese yield. 相似文献
19.