首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This experiment was conducted to determine the effects of corn silage hybrids and nonforage fiber sources (NFFS) in high forage diets formulated with high dietary proportions of alfalfa hay (AH) and corn silage (CS) on ruminal fermentation and productive performance by early lactating dairy cows. Eight multiparous Holstein cows (4 ruminally fistulated) averaging 36 ± 6.2 d in milk were used in a duplicated 4 × 4 Latin square design experiment with a 2 × 2 factorial arrangement of treatments. Cows were fed 1 of 4 dietary treatments during each of the four 21-d replicates. Treatments were (1) conventional CS (CCS)-based diet without NFFS, (2) CCS-based diet with NFFS, (3) brown midrib CS (BMRCS)-based diet without NFFS, and (4) BMRCS-based diet with NFFS. Diets were isonitrogenous and isocaloric. Sources of NFFS consisted of ground soyhulls and pelleted beet pulp to replace a portion of AH and CS in the diets. In vitro 30-h neutral detergent fiber (NDF) degradability was greater for BMRCS than for CCS (42.3 vs. 31.2%). Neither CS hybrids nor NFFS affected intake of dry matter (DM) and nutrients. Digestibility of N, NDF, and acid detergent fiber tended to be greater for cows consuming CCS-based diets. Milk yield was not influenced by CS hybrids and NFFS. However, a tendency for an interaction between CS hybrids and NFFS occurred, with increased milk yield due to feeding NFFS with the BMRCS-based diet. Yields of milk fat and 3.5% fat-corrected milk decreased when feeding the BMRCS-based diet, and a tendency existed for an interaction between CS hybrids and NFFS because milk fat concentration further decreased by feeding NFFS with BMRCS-based diet. Although feed efficiency (milk/DM intake) was not affected by CS hybrids and NFFS, an interaction was found between CS hybrids and NFFS because feed efficiency increased when NFFS was fed only with BMRCS-based diet. Total volatile fatty acid production and individual molar proportions were not affected by diets. Dietary treatments did not influence ruminal pH profiles, except that duration (h/d) of pH <5.8 decreased when NFFS was fed in a CCS-based diet but not in a BMRCS-based diet, causing a tendency for an interaction between CS hybrids and NFFS. Overall measurements in our study reveal that high forage NDF concentration (20% DM on average) may eliminate potentially positive effects of BMRCS. In the high forage diets, NFFS exerted limited effects on productive performance when they replaced AH and CS. Although the high quality AH provided adequate NDF (38.3% DM) for optimal rumen fermentative function, the low NDF concentration of the AH and the overall forage particle size reduced physically effective fiber and milk fat concentration.  相似文献   

2.
An experiment was conducted to evaluate the effects of increasing dietary inclusion rates of wet corn gluten feed (WCGF; Sweet Bran; Cargill Inc., Blair, NE) on milk production and rumen parameters. Four primiparous and 4 multiparous ruminally cannulated Holstein cows averaging 90 ± 13 d in milk (mean ± SD) were randomly assigned to 1 of 4 sequences in a replicated 4 × 4 Latin square experiment with 28-d periods. Treatments were diets containing 0, 11, 23, and 34% WCGF on a dry matter basis; alfalfa hay, corn silage, corn grain, soybean meal, expeller soybean meal, and mineral supplements were varied to maintain similar nutrient concentrations across diets. Performance and measures of ruminal fermentation were monitored. Linear and quadratic effects of increasing WCGF inclusion rate were assessed using mixed-model analysis. Increasing dietary WCGF linearly increased dry matter intake (26.7, 25.9, 29.3, and 29.7 kg/d for 0, 11, 23, and 34% WCGF, respectively) and milk production (36.8, 37.0, 40.1, and 38.9 kg/d). Concentrations of milk components did not differ among treatments; however, protein and lactose yields increased linearly and fat yield tended to increase linearly when more WCGF was fed. This led to greater production of energy-corrected milk (38.2, 38.8, 41.7, and 40.4 kg/d) and solids-corrected milk (35.2, 35.7, 38.5, and 37.2 kg/d), but efficiency of production linearly decreased. Increased WCGF in the diet tended to linearly decrease ruminal pH (6.18, 6.12, 6.14, and 5.91), possibly because mean particle size was below typical recommendations for all diets, and diets with greater proportions of WCGF had a smaller mean particle size. Ruminal acetate concentration decreased linearly and propionate increased linearly as WCGF inclusion rate increased. Treatments had a quadratic effect on ammonia concentration, with greater concentrations for the 0 and 34% WCGF diets. In situ digestibility of soybean hulls showed a significant diet-by-time interaction, and increasing dietary levels of WCGF linearly decreased in situ neutral detergent fiber disappearance at 24 h. Change in body condition score increased linearly with increasing WCGF inclusion rate. Results indicate that adding WCGF to dairy rations can increase energy-corrected milk yield, and this increase appears to be driven, at least in part, by an increase in dry matter intake.  相似文献   

3.
We evaluated effects of wet corn gluten feed (WCGF) and a novel product (SHSL) containing raw soybean hulls and corn steep liquor on performance and digestion in lactating dairy cows. In Experiment 1, 46 multiparous Holstein cows were assigned to control (C), WCGF (20% of diet DM), or SHSL (20% of diet DM). Diets were fed as a total mixed ration beginning after calving. The C diet contained (dry matter [DM] basis) 30% alfalfa hay, 15% corn silage, 32% corn, 9.3% whole cottonseed, 4.4% solvent soybean meal (SBM), and 3.3% expeller SBM. The WCGF replaced 10% alfalfa hay, 5% corn silage, and 5% corn grain, while expeller SBM replaced solvent SBM to maintain diet rumen undegradable protein. The SHSL replaced 10% alfalfa hay, 5% corn silage, 3% solvent SBM, and 2% corn. Dietary crude protein averaged 18.4%. Milk, energy-corrected milk (ECM), DM intake (DMI), and ECM/DMI were similar among diets during the first 13 wk of lactation. During wk 14 through 30 postpartum, WCGF and SHSL improved milk, ECM, milk component yield, and ECM/DMI. In Experiment 2, 6 cows were used to evaluate digestibility and rumen traits. Dry matter intake and total tract digestibilities of DM, fiber, and crude protein were not different among diets. Diets did not affect ruminal liquid dilution rate, pH, or concentrations of total volatile fatty acids or ammonia, but acetate:propionate was higher for C (3.38) than for WCGF (2.79) or SHSL (2.89). The WCGF and SHSL products can serve as alternative feedstuffs in diets fed to lactating dairy cattle.  相似文献   

4.
A dual-purpose hybrid and a hybrid selected for high neutral detergent fiber (NDF) concentration were harvested as corn silage. The dual-purpose silage (DPCS) had 42% NDF and 35.4% in vitro (30 h) NDF digestibility and the high fiber silage (HFCS) had 49% NDF and 40.1% in vitro NDF digestibility. Two diets (dry matter basis) had 45% DPCS or HFCS and 46% corn grain-based concentrate (dietary NDF was 29 and 32%, respectively), a third diet had 33% HFCS and 58% corn-based concentrate (27% dietary NDF), and a fourth diet had 33% DPCS and 58% concentrate that contained soybean hulls (32% dietary NDF). All diets contained 9% alfalfa silage. Diets were fed to eight midlactation Holstein cows in a 4 x 4 Latin square with 28 d periods. No differences among treatments were observed for milk yield (34.1 kg/d), dry matter intake (23.7 kg/d), and yield and concentration of milk protein. Cows fed the diet with 33% HFCS tended to have lower milk fat percentage than cows fed the 45% DPCS diet. Total digestible nutrients (measured using total collection) tended to be lower for the 33% DPCS diet than for the 45% DPCS diet. In vivo digestibility of NDF tended to be lower for the 33% HFCS diet than the 45% DPCS diet, but digestibility of starch in the two diets with HFCS was higher than the 45% DPCS diet. The lack of any substantial differences in responses suggest that the HFCS was equal to the DPCS when fed at 45% of the diet dry matter (53.5% total forage). When HFCS replaced DPCS so that NDF was similar between diets, milk fat percentage was reduced and ruminal propionate was increased. Increasing dietary NDF by adding soybean hulls to a diet based on DPCS reduced digestibility of dry matter, organic matter, and protein, and resulted in lower energy balance than the 45% DPCS diet.  相似文献   

5.
A study was conducted to investigate the response to supplemental tallow of lactating cows fed basal diets with different alfalfa silage:corn silage ratios. We postulated that supplemental tallow will have decreasing negative effects on rumen fermentation, dry matter intake (DMI), and milk fat percentage as the dietary ratio of alfalfa silage:corn silage is increased. Eighteen Holstein cows averaging 134 +/- 14 d in milk were used in a replicated 6 x 6 Latin square design with 21-d periods. Treatments were arranged as a 2 x 3 factorial with 0 or 2% tallow (DM basis) and three forage treatments: 1) 50% of diet DM as corn silage, 2) 37.5% corn silage and 12.5% alfalfa silage, and 3) 25% corn silage and 25% alfalfa silage. Cows were allowed ad libitum consumption of a total mixed ration. Diets were formulated to contain 18% crude protein and 32% neutral detergent fiber. No fat x forage treatment interactions were observed. Fat supplemented cows had lower DMI and produced more milk with less milk fat content relative to non-supplemented cows. Concentration of trans-octadecenoic acids was higher in milk fat of tallow-supplemented cows. Tallow supplementation had no effect on ruminal pH and acetate:propionate ratio, but tended to decrease total volatile fatty acid (VFA) concentration in the rumen. Increasing the proportion of alfalfa silage increased DMI, milk fat percentage, and milk fat yield regardless of the fat content of the diet. Total VFA concentration and acetate:propionate ratio in the rumen were increased in response to higher levels of alfalfa in the diets. These results suggest that replacing corn silage with alfalfa silage did not alleviate the negative response of dairy cows to tallow supplementation at 2% of diet DM.  相似文献   

6.
The effect of the content of lysine and methionine in metabolizable protein (MP) on lactation performance and N utilization in Chinese Holstein cows was determined. A control diet (C) was formulated to be adequate in energy but slightly limiting in MP. The concentration of Met and Lys in MP was 1.87 and 5.93%, respectively. The treatments were as follows (% of Met or Lys in MP): L = diet C supplemented with l-lysine-HCl at 0.49% on a dry matter (DM) basis (Met, 1.87; Lys, 7.00); M = diet C supplemented with 2-hydroxy-4-(methylthio)-butanoic acid (HMB) at 0.15% (Met, 2.35; Lys, 5.93); ML = diet C supplemented with 0.49% l-lysine HCl and 0.15% HMB (Met, 2.39; Lys, 7.10). The diets were fed to 60 Chinese Holsteins in mid-lactation (average days in milk = 120, and milk yield = 32.0 kg/d) for 8 wk. Milk yield was increased by supplementation of either Lys (1.5 kg/d) or Met (2.0 kg/d), and supplementation of both Lys and Met further increased milk yield (3.8 kg/d). There was no significant difference in dry matter intake across treatment groups. Cows on treatments M (3.95%) and ML (3.90%) had higher milk fat content than those on C (3.60%) and L (3.67%), but there were no significant differences in milk protein and lactose contents or somatic cell count among treatments. Supplementation of Met or Lys significantly increased Met or Lys concentration in arterial plasma. Treatment ML had a higher conversion of intake N to milk N and lower urea N concentrations in serum, urine, and milk than did treatment C. Supplementing HMB and l-lysine-HCl to provide approximately 2.3% Met and 7.0% Lys of the MP in diets slightly limiting in MP increased milk production, milk protein yield, and N utilization efficiency.  相似文献   

7.
An experiment was conducted to examine effects of prepartum, postpartum, or continuous prepartum and postpartum supply of rumen-protected lysine (RPLys) and rumen-protected methionine (RPMet) on performance and blood metabolites of transition cows. The experiment consisted of a prepartum (3 wk), postpartum (3 wk), and carryover (10 wk) period. Eighty-eight prepartum cows (36 primiparous and 52 multiparous cows) were blocked by parity and expected calving date and assigned to 1 of 4 treatments arranged factorially. Treatments were a prepartum diet (12% crude protein on a dry matter basis) without (Pre?) or with supplemental RPLys (10 g of digestible Lys/cow per day) and RPMet (4 g of digestible Met/cow per day; Pre+) followed by postpartum diets (16% crude protein on a dry matter basis) without (Post?) or with supplemental RPLys (26 g of digestible Lys/cow per day) and RPMet (11 g of digestible Met/cow per day; Post+). Prepartum, only 2 treatments were applied, but postpartum cows received treatments of Pre?Post?, Pre?Post+, Pre+Post?, or Pre+Post+. During the prepartum period, treatment did not affect dry matter intake and body weight. During the postpartum period, milk protein content was greater (3.23 vs. 3.11%) for Post+ compared with Post? independent of prepartum treatment. However, dry matter intake, body weight, milk yield, and yields of milk components were not affected by Post+ versus Post?. No effects of prepartum treatment or interactions between pre- and postpartum treatments were observed on postpartum performance of cows. No effects of pre- and postpartum supplementation of RPLys and RPMet on performance during the carryover period were found except prepartum supplementation of RPLys and RPMet decreased somatic cell count (4.60 vs. 4.83; log10 transformed) compared with Pre? in the postpartum period and this effect continued during the carryover period [i.e., 4.42 and 4.55 (log10 transformed) for Pre+ and Pre?, respectively]. Prepartum supplementation of RPLys and RPMet increased or tended to increase plasma concentration of Lys, Met, and branched-chain AA compared with Pre? in prepartum cows. Cows on Post+ tended to have greater plasma Lys concentration compared with Post?, but plasma Met concentration was not affected. Health events of postpartum cows were not affected by treatments. In conclusion, we did not observe positive effects of supplementing with RPLys and RPMet on performance of prepartum and postpartum cows. However, prepartum supply of RPLys and RPMet may have potential to improve udder health and immune status of fresh cows.  相似文献   

8.
Eighty-four Holstein cows were assigned to a randomized block experiment to determine effects of supplementing pre- and postpartum diets containing highLys protein supplements with rumen-protected Met and Lys. Before parturition, cows received a basal diet with 1) no rumen-protected amino acids (AA), 2) 10.5 g/d of Met from rumen-protected Met, or 3) 10.2 g/d of Met and 16.0 g/d of Lys from rumen-protected Met plus Lys. After parturition, cows continued to receive AA treatments but switched to diets balanced for 16.0 or 18.5% crude protein (CP). Diets were corn-based; supplemental protein was provided by soybean products and blood meal. Cows received treatments through d 105 of lactation. Compared with basal and Met-supplemented diets, Met + Lys supplementation increased yield of energy-corrected milk, fat, and protein, and tended to increase production of 3.5% fat-corrected milk. Significant CP x AA interactions were observed only for milk protein and fat content. Supplementation of the 16% CP diet with Met and Met + Lys had no effect on milk true protein and fat content. However, Met and Met + Lys supplementation of the 18.5% CP diet increased milk protein content by 0.21 and 0.14 percentage units, respectively, and Met supplementation increased fat content by 0.26 percentage units. Results of this study indicate that early-lactation cows fed corn-based diets are responsive to increased intestinal supplies of Lys and Met and that the responses depend on dietary CP concentration, supply of metabolizable protein, and intestinal digestibility of the rumen-undegradable fraction of supplemental proteins.  相似文献   

9.
The effects of dietary nonforage fiber sources on production responses of lactating dairy cattle have been well described, but interactions with other components of the diet have been less thoroughly explored. We investigated the effects of adding 2 commonly fed fat sources to a ration featuring high levels of nonforage fiber supplied by a corn milling by-product. Midlactation Holstein cows were blocked by parity, stratified by days in milk, and randomly assigned to 1 of 6 pens (12 cows/pen). Pens were randomly assigned to treatment sequences in a 3 × 3 Latin square design, where the treatments consisted of prilled saturated fat (SAT; Energy Booster 100, Milk Specialties Co., Dundee, IL), calcium salts of long-chain fatty acids (UNS; Megalac, Church and Dwight Co. Inc., Princeton, NJ), or no added dietary fat (control), with fat sources included to provide 1.2% added fat (dry matter basis). Treatment periods were 21 d; milk and feed samples were collected and milk yield and feed intake were recorded for the last 4 d of each period. Results were analyzed with mixed models with pen as the experimental unit, and orthogonal contrasts were employed to evaluate the overall effect of added fat and the effect of fat source. Dry matter intake and milk yield tended to increase with added fat. Protein content decreased with fat supplementation, to a greater degree for UNS than for SAT, but protein yield was not affected. Fat content, fat yield, and energy-corrected milk yield were not affected by treatment. Conversion of feed to milk tended to increase for UNS compared with SAT. Fat supplementation to diets high in nonforage fiber had effects that were similar to those reported for more traditional lactation diets, except for the dry matter intake response.  相似文献   

10.
An experiment was conducted with 36 primiparous and 40 multiparous Holstein cows to examine the effects of feeding wet corn gluten feed (WCGF) on 305-d milk production, dry matter (DM) intake, body condition score (BCS), and health. The experimental treatments included: 1) control—WCGF not fed (n = 27); 2) WCGF-L—cows received diets containing WCGF (38% DM basis) during lactation (n = 23); and 3) WCGF-DL—cows received diets containing WCGF (38% DM basis) during the dry period and lactation (n = 26). During the dry period, cows consuming WCGF were observed to have a significant gain in BCS (0.07 ± 0.06) compared with a loss in BCS in cows fed the control diet (control = −0.11 ± 0.06 and WCGF-L = −0.04 ± 0.06). During lactation, there were no differences by treatment on BCS. Cows consuming WCGF during lactation consumed more feed compared with the control: 25.4, 23.8, and 21.2 ± 0.76 kg/d for WCGF-L, WCGF-DL, and the control, respectively. Milk production was higher for cows consuming WCGF: 35.0, 34.7, and 31.1 ± 2.1 kg/d for WCGF-L, WCGF-DL, and the control, respectively. No differences were found in either DM intake or actual milk yield between the WCGF-L and WCGF-DL treatments, indicating that prepartum diets did not influence lactational performance. The WCGF diets resulted in significant reductions in the concentration of milk fat (3.94, 3.74, and 4.15 ± 0.08% for WCGF-L, WCGF-DL, and the control, respectively), but because total milk yield was increased, there were no differences in total milk fat yield. In addition, 3.5% of fat-corrected milk tended to be affected by diet: 38.9, 36.3, and 34.7 ± 1.93 kg/d for WCGF-L, WCGF-DL, and the control, respectively. The increasing effect of DM intake and milk yield in cows consuming WCGF resulted in a similar efficiency of 3.5% fat-corrected milk production for all treatments, averaging 1.5 ± 0.09. Total protein yields were significantly higher for cows consuming WCGF diets during lactation: 1.15, 1.10, 1.00 ± 0.06 kg/d for WCGF-L, WCGF-DL, and the control, respectively. These results indicate that diets may be formulated to contain as much as 37.5% WCGF (DM basis).  相似文献   

11.
In addition to lysine and methionine, current ration-balancing programs suggest that branched-chain amino acid (BCAA) supply may also be limiting in dairy cows. The objective of this study was to investigate whether BCAA, leucine, isoleucine, and valine become limiting for milk protein synthesis when methionine and lysine supply were not limiting. Nine multiparous Holstein cows with an average milk production of 53.5 ± 7.1 kg/d were randomly assigned to 7-d continuous jugular infusions of saline (CTL), methionine and lysine (ML; 12 g and 21 g/d, respectively), or ML plus leucine, isoleucine, and valine (ML+BCAA; 35 g, 15 g, and 15 g/d, respectively) in a 3 × 3 Latin square design with 3 infusion periods separated by 7-d noninfusion periods. The basal diet consisted of 40% corn silage, 14% alfalfa hay, and a concentrate mix, and respectively supplied lysine, methionine, isoleucine, leucine, and valine as 6.1, 1.8, 4.7, 8.9, and 5.3% of metabolizable protein. Dry matter intake (23.9 kg/d), milk yield (52.8 kg/d), fat content (2.55%), fat yield (1.33 kg/d), lactose content (4.77%), lactose yield (2.51 kg/d), and milk protein efficiency (0.38) were similar across treatments. Protein yield and protein content were not significantly different between ML (1.52 kg/d and 2.88%, respectively) and ML+BCAA (1.51 kg/d and 2.83%, respectively), but they were significantly greater than that of CTL (1.39 kg/d and 2.71%). Cows that received ML+BCAA had less milk urea nitrogen content (10.9 mg/dL) compared with milk of CTL cows (12.4 mg/dL) and ML cows (11.8 mg/dL). Whereas high-producing cows responded positively to methionine and lysine supplementation, no apparent benefits of BCAA supplementation in milk protein synthesis were found. Infusion of BCAA may have stimulated synthesis of other body proteins, probably muscle proteins, as evidenced by decreased milk urea nitrogen.  相似文献   

12.
Twenty-four lactating Holstein cows were used in a 6-wk randomized block design trial with a 2 × 2 factorial arrangement of treatments to determine the effects of feeding ground corn (GC) or steam-flaked corn (SFC) in diets based on either annual ryegrass silage (RS) or a 50:50 blend of annual ryegrass and corn silages (BLEND). Experimental diets contained 49.6% forage and were fed as a total mixed ration once daily for 4 wk after a 2-wk preliminary period. No interactions were observed among treatments. Cows fed BLEND consumed more dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) than those fed RS, but total-tract digestibility of OM, NDF, and ADF was greater for RS than for BLEND. No differences in nutrient intake were observed among treatments during wk 4 when nutrient digestibility was measured, but digestibility of DM and OM was greater for SFC than for GC. Cows fed BLEND tended to produce more energy-corrected milk than those fed RS, resulting in improved efficiency (kg of milk per kg of DM intake). When diets were supplemented with SFC, cows consumed less DM and produced more milk that tended to have lower milk fat percentage. Yield of milk protein and efficiency was greatest with SFC compared with GC. Blood glucose and milk urea nitrogen concentrations were similar among treatments, but blood urea nitrogen was greater for cows fed GC compared with those fed SFC. Results of this trial indicate that feeding a blend of annual ryegrass and corn silage is more desirable than feeding diets based on RS as the sole forage. Supplementing diets with SFC improved performance and efficiency compared with GC across forage sources.  相似文献   

13.
Forty Holstein cows were used in a completely randomized design with a 2-wk covariate period followed by a 6-wk experimental period to evaluate incremental substitution of nonforage fiber provided by dried distillers grains with solubles (DDGS) and soyhulls (SH) for starch provided by corn in the diet. Diets provided decreasing concentrations of starch: 29% starch with 0% DDGS; 26% starch with 7% DDGS; 23% starch with 14% DDGS; and 20% starch with 21% DDGS. Diets contained 27% corn silage, 22% alfalfa hay, and 51% concentrate mix and were formulated to be 17% crude protein, 4.7% fat, and 23% neutral detergent fiber from forage. Total neutral detergent fiber increased as DDGS and SH were included in the diet. Soyhulls were included in a linear fashion along with DDGS to replace soybean meal and expeller soybean meal, thereby maintaining a similar crude protein content across diets. Dry matter intake decreased linearly; consequently, feed efficiency tended to increase linearly as starch was replaced by nonforage fiber. There was no effect of diet on milk production or milk fat and protein percentage or yield. Milk fatty acid profiles were similar across diets. Other response variables, including 4% fat-corrected milk, total solids, and milk urea nitrogen, were unaffected by dietary treatments. Ruminal volatile fatty acid concentration did not differ between diets. Concentrations of blood glucose and β-hydroxybutyrate were similar across diets. Results from this research suggest that nonforage fiber from DDGS can partially substitute for starch from corn in dairy cow diets without affecting milk production and milk composition. Economic analysis of the diets showed that feeding DDGS and SH in substitution of corn was cost-effective. Results from this experiment indicate that DDGS and SH can replace corn as an energy source to decrease feed costs.  相似文献   

14.
An experiment was conducted to evaluate the effects of varying the alfalfa inclusion rate in diets containing 31% (dry matter basis) wet corn gluten feed (Sweet Bran, Cargill Inc.). Eighty primiparous and multiparous Holstein cows averaging 178 ± 90 d in milk (mean ± SD) were randomly assigned to 1 of 4 sequences in a 4 × 4 Latin square design with 28-d periods. Treatments were diets containing 0, 7, 14, or 21% alfalfa on a dry matter basis, with corn silage, corn grain, soybean meal, expeller soybean meal, and mineral supplements varying across diets to maintain uniform nutrient densities. Diets were formulated for similar crude protein, neutral detergent fiber, and nonfiber carbohydrate concentrations. Feed intake, milk production, body weight, and body condition score were monitored, and linear and quadratic effects of increasing the alfalfa inclusion rate were assessed using mixed model analysis. As the alfalfa inclusion rate increased, dry matter intake tended to increase linearly (26.7, 27.3, 27.4, and 27.5 kg/d for 0, 7, 14, and 21% alfalfa, respectively), and solids-corrected milk (29.9, 30.2, 30.8, and 30.5 kg/d) and energy-corrected milk production (32.9, 33.3, 33.8, and 33.6 kg/d) tended to increase linearly. Body weight gain decreased linearly (22.9, 18.0, 11.2, and 9.5 kg/28 d) with increasing alfalfa inclusion rate. Although increasing the inclusion rate of alfalfa increased the proportion of large particles in the diets, treatments had no effect on milk fat yield or concentration. Feeding more alfalfa (up to 21% of dry matter) tended to increase milk yield while decreasing body weight gain, suggesting that metabolizable energy utilization shifted from body weight gain to milk production in these treatments. However, adding alfalfa to the diet had only minor effects on productivity.  相似文献   

15.
Forty-eight mid-lactation Holstein cows were used in a 6-wk completely randomized block design trial with a 4 × 3 factorial arrangement of treatments to determine the effects of feeding different proportions of corn silage and ryegrass silage with supplemental ground corn (GC), steam-flaked corn (SFC), and hominy feed (HF) on the performance of lactating dairy cows. Forage provided 49% of the dietary dry matter in the experimental diets, which were formulated to meet National Research Council requirements. Ryegrass silage provided 100, 75, 50, or 25% of the total forage dry matter, with corn silage supplying the remainder. There were no interactions between the proportion of forage provided by ryegrass silage and energy supplement. Dry matter intake and milk protein percentage decreased linearly with increasing proportions of ryegrass silage, but milk protein yield was similar among forage treatments. There were no differences among forage treatments in milk yield, milk fat percentage and yield, and energy-corrected milk yield. Dry matter intake was higher and there was a tendency for increased milk fat percentage for GC compared with SFC or HF. No other differences were observed in milk yield or composition among energy supplements. Plasma urea nitrogen and glucose concentrations were similar among treatments. Under the conditions of this trial, our results indicate that feeding a combination of corn silage and ryegrass silage is more desirable than feeding ryegrass silage alone, whereas supplementation with GC, SFC, or HF supports similar levels of milk production.  相似文献   

16.
The objective of this study was to determine the effect of partial replacement of forage neutral detergent fiber (NDF) with by-product NDF in close-up diets of dairy cattle on periparturient metabolism and performance. Holstein cows (n = 45) and heifers (n = 19) were fed corn silage-based diets containing 1) 30% oat hay, or 2) 15% oat hay and 15% beet pulp from d −21 relative to expected parturition until parturition. After parturition, all animals received the same lactation diet. Animals were group-fed from d −21 to −10 relative to expected parturition and fed individually from d −10 until 14 d in milk. Animals were required to have at least 5 d of prepartum dry matter intake (DMI) data to remain on the study. Data were analyzed as a randomized design and subjected to ANOVA using the MIXED procedure of SAS. Close-up diet did not affect DMI, total tract nutrient digestibility, energy balance, or serum content of nonesterified fatty acids and β-hydroxybutyrate during the last 5 d prepartum. Prepartum body weight and body condition score were similar between treatments. There was no carryover effect of close-up diet on DMI, energy balance, milk yield, body weight, body condition score, or serum content of nonesterified fatty acids and β-hydroxybutyrate during the first 14 d in milk. In summary, partial replacement of forage NDF (oat hay) with by-product NDF (beet pulp) did not affect periparturient metabolism or performance.  相似文献   

17.
Six multiparous Holstein cows (average 31 days in milk; 36.3 kg/d of milk) fitted with ruminal cannulas were used in a 6 x 6 Latin square with 21-d periods to investigate the effects of diets that varied in forage source and amount of supplemental tallow. Isonitrogenous diets in a 2 x 3 factorial arrangement were based on either high corn silage (40:10 corn silage to alfalfa silage, % of dry matter) or high alfalfa silage (10:40 corn silage to alfalfa silage, % of dry matter) and contained 0, 2, or 4% tallow. Intakes of dry matter and total fatty acids were lower when cows were fed the high corn silage diet. Tallow supplementation linearly decreased dry matter intake. Milk yield was unaffected by diet; yields of milk fat and 3.5% fat-corrected milk were higher for the high alfalfa silage diet but were unaffected by tallow. Milk fat percentage was higher for the high alfalfa silage and tended to decrease when tallow was added to the high corn silage diet. Contents of trans-C18:1 isomers in milk fat were increased by high corn silage and tallow, and tended to be increased more when tallow was fed in the high corn silage diet. Ruminal pH and acetate:propionate were lower when high corn silage was fed. Ruminal acetate:propionate decreased linearly as tallow increased; the molar proportion of acetate was decreased more when tallow was added to the high corn silage diet. Ruminal liquid dilution rates were higher for the alfalfa silage diet; ruminal volume and solid passage rates were similar among diets. Total tract apparent digestibilities of dry matter, organic matter, crude protein, starch, energy, and total fatty acids were unaffected by diet. Digestibilities of neutral detergent fiber, acid detergent fiber, hemicellulose, and cellulose were lower when high corn silage was fed. The high alfalfa silage diet increased intakes of metabolizable energy and N, and increased milk energy and productive N. Tallow decreased the amount of N absorbed but had few other effects on utilization of energy or N. Tallow linearly increased concentrations of nonesterified fatty acids and cholesterol in plasma; cholesterol was increased by high alfalfa silage. Overall, forage source had more pronounced effects on production and metabolism than did tallow supplementation. Few interactions between forage source and tallow supplementation were detected except that ruminal fermentation and milk fat content were affected more negatively when tallow was fed in the high corn silage diet.  相似文献   

18.
Eighteen primiparous and 42 multiparous Holstein cows were blocked according to parity and expected calving date and assigned randomly to 1 of 3 dietary treatments: 1) a basal diet (negative control), 2) the basal diet plus 2-hydroxy-4-methylthio butanoic acid isopropyl ester (MetaSmart, Adisseo Inc., Antony, France), or 3) the basal diet plus rumen-protected Met (Smartamine M, Adisseo Inc., Alpharetta, GA). Treatments were initiated 21 d before expected calving and continued through 140 d postpartum. Diets were similar in ingredient and chemical composition, except for the content of Met in metabolizable protein. MetaSmart [0.35% prepartum and 0.54% postpartum in diet dry matter (DM)] and Smartamine M (0.06% prepartum and 0.10% postpartum in diet DM) were added to the basal diet in amounts needed to achieve a 3.0:1 ratio of Lys to Met in metabolizable protein. Prepartum DM intake (DMI; 13.5 kg/d), body weight (687 kg), body condition score (3.81), postpartum milk yield (42.0 kg/d), milk fat yield (1,549 g/d), milk fat content (3.66%), milk true protein yield (1,192 g/d), and milk urea N content (12.9 mg/dL) were not different among treatments. Postpartum DMI and body condition score were greater and the ratios of milk:DMI and milk N:feed N were less for cows fed the MetaSmart diet than for cows fed the control and Smartamine M diets. Milk protein content was greater for the Smartamine M (2.87%) and MetaSmart (2.81%) treatments than for the control treatment (2.72%). Concentrations of Met and Met + Cys in total plasma AA were different among treatments, with values for the Smartamine M treatment being the highest, followed by the MetaSmart and control treatments. The results indicated that both MetaSmart and Smartamine M are effective in providing metabolizable Met, but clarification of their relative contributions to metabolizable Met is still needed.  相似文献   

19.
Various diet formulation strategies were evaluated to alleviate milk fat depression using a corn milling product (CMP) that contained approximately 28% crude protein, 34% neutral detergent fiber (NDF), and 12% starch (dry basis). The control diet comprised mostly corn silage, alfalfa silage, corn grain, and soybean meal and contained approximately 22% forage NDF (fNDF), 28% total NDF, and 33% starch. Another diet included 25% CMP that replaced corn grain and soybean meal and contained 27% starch and 33% NDF. Two other diets included 25 or 40% CMP that replaced forage and concentrate and contained 19 and 17% fNDF, 31 and 32% total NDF, and 30 and 28% starch, respectively. Diets were fed to 16 mid-lactation Holstein cows in 4 replicated 4 × 4 Latin squares. Milk fat percentage was low for the control diet (2.9%) but increased to 3.5% when cows were fed the diet with 25% CMP that replaced concentrate. Cows fed diets with 25 or 40% CMP that replaced forage and concentrate also had low milk fat percentages (3.0 and 2.9%, respectively). Intake was lowest for cows fed the control diet. Milk yield was reduced when CMP replaced only concentrate but because of the substantial increase in milk fat, the yield of energy-corrected milk was greater. Calculated energy use (maintenance+milk+body weight change) divided by dry matter intake was similar for the control and for the diet in which CMP replaced only concentrate, but it decreased linearly as increasing amounts of CMP replaced both forage and concentrate. A quadratic equation using the ratio of dietary starch to fNDF was the best predictor of milk fat percentage (ratios >1.4 were associated with reduced milk fat). Overall, CMP was effective at alleviating milk fat depression when it replaced corn grain but not when it replaced forage and concentrate.  相似文献   

20.
The objective of this study was to determine if the length of chop of processed corn silage influences the impact of supplemental fat on rumen fermentation and performance of dairy cows. We hypothesized that increasing forage particle length may alleviate the interference of fat on rumen fermentation. Sixteen Holstein cows averaging 120 d in milk were used in a replicated 4 x 4 Latin square design with 21-d periods. Treatments were arranged as a 2 x 2 factorial with 0 or 2% tallow (dry matter basis), and corn silage harvested at either 19 or 32 mm theoretical length of cut. The forage:concentrate ratio was 50:50, and diets were formulated to contain 18% crude protein and 32% neutral detergent fiber (dry matter basis). Cows were allowed ad libitum consumption of diets that were fed twice daily as a total mixed ration. Fat supplemented cows had lower dry matter intake and produced less milk fat relative to nonsupplemented cows. No effect of corn silage particle length was observed for dry matter intake and milk fat production. Proportion of trans-10 C18:1 and of trans-10, cis-12 conjugated linoleic acid was highest in milk fat of cows fed 2% supplemental tallow. Rumen pH was not affected by feeding tallow, and tended to be highest for cows eating the 32-mm theoretical length of chop corn silage diets. No effect of treatments was observed for rumen acetate-to-propionate ratio or rumen ammonia concentration. In this study, tallow supplementation had a negative impact on performance of dairy cows regardless of the corn silage particle length. Feeding tallow increased formation of trans-fatty acids in the rumen in the absence of significant changes in the rumen environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号