首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
基于分段线性动态时间弯曲的时间序列聚类算法研究   总被引:4,自引:0,他引:4  
时间序列是一类重要的复杂类型数据,时间序列知识发现正成为知识发现的研究热点之一。欧几里德距离及其扩展作为相似测度被广泛应用于时间序列的比较中,但是这种距离测度时数据没有好的鲁棒性。动态时间弯曲技术是基于非线性动态编程的一种模式匹配算法,但是其计算复杂性相当高。本文提出了基于时间序列分段线性表示的动态时间弯曲算法,通过计算线性分段序列数据之间的最短弯曲路径来获得序列的匹配。对综合控制时间序列数据进行基于不同距离测度的聚类分析对比结果表明本文提出的算法有很高的精度和时振幅差异、嘈声和线性漂移有强的鲁棒性,大大降低计算复杂性,具有良好的应用价值。  相似文献   

2.
对于股票联动性的研究,传统时间序列分析方法及目前数据挖 掘技术主要使用国内或者国外股票指数来研究市场、板块或行业之间的联动关系,并得到一 些较为宏观的结论,存在着缺少直接分析与挖掘个股数据之间的联动性的问题。鉴于此,本文提出一种基于动态时间弯曲的股票时间序列联动性研究方法。通过动态时间弯曲找出若干只形态相似的股票,并在此基础上获得相关的重要信息,再提出基于动态时间弯曲的k-means聚类方法实现股票聚类,进而得到具有相同波动趋势的股票簇。实验结果表 明,新方法能从大量股票中准确找到具有联动关系的个股,区分开不同波动趋势的股票簇,具有一定的优越性。  相似文献   

3.
传统的聚类算法多是针对某个时间片上的静态数据集合进行的聚类分析,但事实上大部分数据存在时间序列上的连续动态演变过程.本文对时间序列数据及其类结构的演变过程进行了分析,发现在一定条件下相邻时间片间的数据集间存在较强的关联性,并且类簇结构间则存在一定的继承性.故本文得出新的思想,在前一时间片聚类结果的基础上,通过对部分变化数据的计算和类簇结构的局部调整就有望获得对后一时间片上数据进行完全聚类相同的效果,且运算量会显著下降.基于此思想提出了一种时间序列数据的动态密度聚类算法(DDCA/TSD).仿真实验中使用6种数据集对所提出算法进行了实验验证.结果显示DDCA/TSD在保证聚类准确性的基础上相对传统聚类算法有明显的时间效率提升,并能更有效地发现数据点的属性变化及类簇结构的演变过程.  相似文献   

4.
5.
针对动态时间弯曲方法计算时间过长的问题,提出增量动态时间弯曲来度量较长时间序列之间的相似性。首先利用动态时间弯曲方法对历史时间序列数据进行相似性度量,得到相应的历史最优弯曲路径和路径中各元素的累积距离代价。其次,通过逆向弯曲度量方法完成当前序列数据 的相似性度量,结合历史数据信息找到与历史弯曲路径相交且度量时间序列距离为当前最小值的新路径,进而实现增量动态时间弯曲的相似性度量。该方法不仅具有良好的度量质量,还具有较高的时间效率。数值实验表明,对于大部分时间序列数据集,新方法的分类准确率和计算性能要优于经典动态时间弯曲。  相似文献   

6.
针对时间序列传统静态聚类问题,提出了对时间序列进行动态聚类的方法。该方法首先提取时间序列的关键点集合,根据改进的FCM算法找到动态特征明显的时间序列,再利用提出的动态聚类算法确定此类时间序列在不同时间段的所属类别,在改进的FCM算法中采用兰氏距离可以使其对奇异值不敏感。实验结果反映出动态特征明显的时间序列类别随时间演化的特性,表明了方法的可行性和有效性。与已有算法相比,该方法揭示了时间序列的部分动态特征。该方法还可以运用于研究数据挖掘的其他问题。  相似文献   

7.
一、引言自然界以及我们社会生活中的各种事物都在运动、变化和发展着,将它们按时间顺序记录下来,我们就可以得到各种各样的“时间序列”数据。对时间序列进行分析,可以揭示事物运动、变化和发展的内在规律,对于人们正确认识事物并据此作出科学的决策具有重要的现实意义。  相似文献   

8.
时间序列数据挖掘中的动态时间弯曲研究综述   总被引:1,自引:1,他引:0  
李海林  梁叶  王少春 《控制与决策》2018,33(8):1345-1353
动态时间弯曲是一种重要的相似性度量方法,对时间序列数据挖掘的性能起着至为关键的作用,对其进行全面和深入的探索具有十分重要的理论意义和实际应用价值.首先简述动态时间弯曲算法的基本步骤,并分析其优点和存在的不足;然后,从动态时间弯曲度量效率的改进研究、度量效果的提升措施以及其在各个行业的应用研究等进行相关综述;最后,给出动态时间弯曲的进一步研究方向.通过对动态时间弯曲方法相关综述及分析,能为相似性度量、聚类和分类等时间序列数据挖掘技术提供必要的文献资料和理论基础.  相似文献   

9.
基于异时间窗划分的时间序列聚类   总被引:3,自引:1,他引:2       下载免费PDF全文
针对相同时间窗对时间序列进行子序列划分的缺点,提出一种异时间窗的子序列划分方法。为解决划分得到的子序列长度不同,而使用动态时间弯曲算法进行子序列相似性度量的计算速度慢的问题,给出一种不规则时间序列距离度量算法。对异时间窗的子序列划分方法和不规则时间序列距离度量算法进行了实验,结果证明了二者的优越性。  相似文献   

10.
为了实现Web服务请求数据的快速聚类,并提高聚类的准确率,提出一种基于增量式时间序列和任务调度的Web数据聚类算法,该算法进行了Web数据在时间序列上的聚类定义,并采用增量式时间序列聚类方法,通过数据压缩的形式降低Web数据的复杂性,进行基于服务时间相似性的时间序列数据聚类。针对Web集群服务的最佳服务任务调度问题,通过以服务器执行能力为标准来分配服务任务。实验仿真结果表明,相比基于网格的高维数据层次聚类算法和基于增量学习的多目标模糊聚类算法,提出的算法在聚类时间、聚类精度、服务执行成功率上均获得了更好的效果。  相似文献   

11.
限制对齐路径长度的动态时间规整(LDTW)算法存在时间复杂度高和计算量大的问题。基于LDTW算法提出固定对齐路径长度的动态时间规整(FDTW)算法。通过调整LDTW算法中对齐路径长度的控制策略,由控制在某个区间改为固定到某个具体值,相应缩减累计代价矩阵中元素的计算范围。在UCR时间序列数据集上的实验结果表明,FDTW与LDTW算法的分类准确率持平,但FDTW算法在分类过程中的时间开销更小,并且能有效降低累计代价矩阵元素的计算量,提高计算效率。  相似文献   

12.
随着大量三维人体运动数据库的建立,使得在数据库中实现基于内容的三维人体运动检索面临着诸多困难,文中提出一种分阶段的动态时间变形(DTW)优化算法的人体运动数据检索技术,可有效检索出逻辑上相似的运动。该算法首先对齐两个运动序列的坐标位置,基于窗口距离构造距离矩阵。其次采用基于全局和局部约束的DTW优化算法进行相似度匹配,得到两个运动间的对应关系。最后通过归一化相似度和DTW平均距离分阶段判断运动的相似性。实验结果表明,分阶段的DTW优化算法在提高效率的同时对长度不等的运动能取得较好的检索结果。  相似文献   

13.
哼唱检索中改进的动态时间规整算法   总被引:1,自引:0,他引:1       下载免费PDF全文
罗凯  魏维  谢青松 《计算机工程》2008,34(20):69-70
针对传统动态时间规整算法只考虑音高特征而不考虑音长特征的缺点,提出改进的算法,采用音高差和音长差共同构成算法中的代价函数,在此基础上实现了一个哼唱检索系统的原型。在数据库容量为115首乐曲和118个哼唱片段的测试中,该算法的前10位命中率为81.0%,前3位命中率为72.4%,性能优于4种同类算法。  相似文献   

14.
时间序列周期模式挖掘的周期检测方法   总被引:1,自引:0,他引:1       下载免费PDF全文
王阅  高学东  武森  陈敏 《计算机工程》2009,35(22):32-34
周期是时间序列的重要特征之一,用于精确描述时间序列并预测其发展趋势。在现有周期模式挖掘算法中,周期长度由用户事先定义,忽略了噪声的存在。在ERP度量和时间弯曲算法的基础上,提出一种新的周期长度检测方法。该方法可以在时间轴上实现弯曲,包括延伸和平移。它受噪声干扰的影响较小,实验结果表明其性能优于原有周期检测算法。  相似文献   

15.
研究了应用数据挖掘技术预测时间序列数据中事件的方法。针对时间序列数据提出了显著特征提取算法,给出了特征间的相似度量标准,并应用特征聚类算法,将时间序列数据转换成相应的特征序列表示。应用频繁模式发现算法和预测模式生成算法在预测时段内发现与目标事件相关的时序特征模式,预测事件的发生。实验结果表明,该文所提出的方法能够有效地预测时间序列数据中的事件。  相似文献   

16.
在时间序列相似性的研究中,通常采用的欧氏距离及其变形无法对在时间轴上发生伸缩或弯曲的序列进行相似性度量,本文提出了一种基于分段极值DTW距离的时间序列相似性度量方法可以解决这一问题。在动态时间弯曲(DTW)距离的基础上,本文定义了序列的分段极值DTW距离,并阐述了其完整的算法实现。与传统的DTW距离相比,分段极值DTW距离在保证度量准确性的同时大大提高了相似性计算的效率。文中最后运用MATLAB作对比实验,并给出实验结果数据,验证了该度量方法的有效性与准确性。  相似文献   

17.
基于分段时间弯曲距离的时间序列挖掘   总被引:22,自引:1,他引:22  
在时间序列库中的数据挖掘是个重要的课题,为了在挖掘的过程中比较序列的相似性,大量的研究都采用了欧氏距离度量或者其变形,但是欧氏距离及其变形对序列在时间轴上的偏移非常敏感.因此,采用了更鲁棒的动态时间弯曲距离,允许序列在时间轴上的弯曲,并且提出了一种新的序列分段方法,在此基础上定义了特征点分段时间弯曲距离.与经典时间弯曲距离相比,大大提高了效率,而且保证了近似的准确性.  相似文献   

18.
针对商业销售的智能分析需求,文章提出了一种基于模糊集合的数据挖掘时间序列模式算法。该算法已得到有效的应用,对企业的经营决策有一定的参考价值。  相似文献   

19.
为了有效地检测发动机试车实验中性能参数发生的异常,提出一种基于时间序列数据挖掘的发动机故障检测方法。通过基于形态特征的时间序列特征表示方法,将发动机参数时 间序列转化为符号序列,再根据符号语义对发动机参数序列实现稳态特征和过渡态特征识别。同时,根据稳态序列的数据特征,利用基于统计特征的时间序列相似性度量结合最不相似模式发现方法实现发动机的故障检测。数值实验结果表明,与传统方法相比,本文方法能够有效地对发动机性能参数进行故障检测,并且具有较强的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号