首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies a bicriteria scheduling problem on a series-batching machine with objective of minimizing makespan and total completion time simultaneously. A series-batching machine is a machine that can handle up to b jobs in a batch and the completion time of all jobs in a batch is equal to the finishing time of the last job in the batch and the processing time of a batch is the sum of the processing times of jobs in the batch. In addition, there is a constant setup time s for each batch. For the problem we can find all Pareto optimal solutions in O(n2) time by a dynamic programming algorithm, where n denotes the number of jobs.  相似文献   

2.
In single machine scheduling with release times and job delivery, jobs are processed on a single machine and then delivered by a capacitated vehicle to a single customer. Only one vehicle is employed to deliver these jobs. The vehicle can deliver at most c jobs in a shipment. The delivery completion time of a job is defined as the time in which the delivery batch containing the job is delivered to the customer and the vehicle returns to the machine. The objective is to minimize the makespan, i.e., the maximum delivery completion time of the jobs. We provide an approximation algorithm for this problem which is better than that given in the literature, improving the performance ratio from 5/3 to 3/2.  相似文献   

3.
Scheduling a Single Server in a Two-machine Flow Shop   总被引:1,自引:0,他引:1  
We study the problem of scheduling a single server that processes n jobs in a two-machine flow shop environment. A machine dependent setup time is needed whenever the server switches from one machine to the other. The problem with a given job sequence is shown to be reducible to a single machine batching problem. This result enables several cases of the server scheduling problem to be solved in O(n log n) by known algorithms, namely, finding a schedule feasible with respect to a given set of deadlines, minimizing the maximum lateness and, if the job processing times are agreeable, minimizing the total completion time. Minimizing the total weighted completion time is shown to be NP-hard in the strong sense. Two pseudopolynomial dynamic programming algorithms are presented for minimizing the weighted number of late jobs. Minimizing the number of late jobs is proved to be NP-hard even if setup times are equal and there are two distinct due dates. This problem is solved in O(n 3) time when all job processing times on the first machine are equal, and it is solved in O(n 4) time when all processing times on the second machine are equal. Received November 20, 2001; revised October 18, 2002 Published online: January 16, 2003  相似文献   

4.
We study the problem of batching and scheduling n jobs in a flow shop comprising m, m≥2, machines. Each job has to be processed on machines 1,…,m in this order. Batches are formed on each machine. A machine dependent setup time precedes the processing of each batch. Jobs of the same batch are processed on each machine sequentially so that the processing time of a batch is equal to the sum of the processing times of the jobs contained in it. Jobs of the same batch formed on machine l become available for a downstream operation on machine l+1 at the same time when the processing of the last job of the batch on machine l has been finished. The objective is to minimize maximum job completion time. We establish several properties of an optimal schedule and develop polynomial time algorithms for important special cases. They are improvements over the existing methods with regard to their generality and time efficiency.  相似文献   

5.
In this paper we study the single-machine batch scheduling problem under batch availability, where both setup and job processing times are controllable by allocating a continuously divisible nonrenewable resource. Under batch availability a set of jobs is processed contiguously and completed together, when the processing of the last job in the batch is finished. We present polynomial time algorithms to find the job sequence, the partition of the job sequence into batches and the resource allocation, which minimize the total completion time or the total production cost (inventory plus resource costs).  相似文献   

6.
We study machine scheduling problems in which the jobs belong to different job classes and they need to be delivered to customers after processing. A setup time is required for a job if it is the first job to be processed on a machine or its processing on a machine follows a job that belongs to another class. Processed jobs are delivered in batches to their respective customers. The batch size is limited by the capacity of the delivery vehicles and each shipment incurs a transport cost and takes a fixed amount of time. The objective is to minimize the weighted sum of the last arrival time of jobs to customers and the delivery (transportation) cost. For the problem of processing jobs on a single machine and delivering them to multiple customers, we develop a dynamic programming algorithm to solve the problem optimally. For the problem of processing jobs on parallel machines and delivering them to a single customer, we propose a heuristic and analyze its performance bound.  相似文献   

7.
This paper aims at minimizing the total completion time together with the maximum lateness. Jobs are processed by parallel machines in batches. A setup is required before processing a batch, which is common for all jobs in the batch. Jobs are continuously processed after the setup time. The processing length of a batch is the sum of the setup time and processing times of the jobs it contains. Due to the availability constraint, the completion time of a job is the time when a batch is totally processed. Considering due dates, the jobs need to be processed in a way that the total completion time and the maximum lateness are minimized. This problem is a kind of NP-hard so first we present a constructive heuristic to solve the problem. Then we propose a genetic algorithm whose initial population is formed by using the heuristic approach. Computational experiments are carried out to evaluate the performance of the proposed algorithms.  相似文献   

8.
We consider the single-machine scheduling problem of minimizing the number of late jobs. We omit here one of the standard assumptions in scheduling theory, which is that the processing times are deterministic. In this scheduling environment, the completion times will be stochastic variables as well. Instead of looking at the expected number of on time jobs, we present a new model to deal with the stochastic completion times, which is based on using a chance constraint to define whether a job is on time or late: a job is on time if the probability that it is completed by the deterministic due date is at least equal to a certain given minimum success probability. We have studied this problem for four classes of stochastic processing times. The jobs in the first three classes have processing times that follow: (i) A gamma distribution with shape parameter p j and scale parameter β, where β is common to all jobs; (ii) A negative binomial distribution with parameters p j and r, where r is the same for each job; (iii) A normal distribution with parameters p j and σ j 2. The jobs in the fourth class have equally disturbed processing times, that is, the processing times consist of a deterministic part and a random component that is independently, identically distributed for each job. We show that the first two cases have a common characteristic that makes it possible to solve these problems in O(nlog n) time through the algorithm by Moore and Hodgson. To analyze the third and fourth problem we need the additional assumption that the due dates and the minimum success probabilities are agreeable. We show that under this assumption the third problem is -hard in the ordinary sense, whereas the fourth problem is solvable by Moore and Hodgson’s algorithm. We further indicate how the problem of maximizing the expected number of on time jobs (with respect to the standard definition) can be tackled if we add the constraint that the on time jobs are sequenced in a given order and when we require that the probability that a job is on time amounts to at least some given lower bound. Supported by EC Contract IST-1999-14186 (Project alcom-FT).  相似文献   

9.
In this paper, we consider the problem of scheduling a set of jobs on a set of identical parallel machines. Before the processing of a job can start, a setup is required which has to be performed by a given set of servers. We consider the complexity of such problems for the minimization of the makespan. For the problem with equal processing times and equal setup times we give a polynomial algorithm. For the problem with unit setup times, m machines and m − 1 servers, we give a pseudopolynomial algorithm. However, the problem with fixed number of machines and servers in the case of minimizing maximum lateness is proven to be unary NP-hard. In addition, recent algorithms for some parallel machine scheduling problems with constant precessing times are generalized to the corresponding server problems for the case of constant setup times. Moreover, we perform a worst case analysis of two list scheduling algorithms for makespan minimization.  相似文献   

10.
We study the online batch scheduling problem on parallel machines with delivery times. Online algorithms are designed on m parallel batch machines to minimize the time by which all jobs have been delivered. When all jobs have identical processing times, we provide the optimal online algorithms for both bounded and unbounded versions of this problem. For the general case of processing time on unbounded batch machines, an online algorithm with a competitive ratio of 2 is given when the number of machines m=2 or m=3, respectively. When m≥4, we present an online algorithm with a competitive ratio of 1.5+o(1).  相似文献   

11.
We consider single-machine batch delivery scheduling with an assignable common due date and controllable processing times, which vary as a convex function of the amounts of a continuously divisible common resource allocated to individual jobs. Finished jobs are delivered in batches and there is no capacity limit on each delivery batch. We first provide an O(n5) dynamic programming algorithm to find the optimal job sequence, the partition of the job sequence into batches, the assigned common due date, and the resource allocation that minimize a cost function based on earliness, tardiness, job holding, due date assignment, batch delivery, and resource consumption. We show that a special case of the problem can be solved by a lower-order polynomial algorithm. We then study the problem of finding the optimal solution to minimize the total cost of earliness, tardiness, job holding, and due date assignment, subject to limited resource availability, and develop an O(nlog n) algorithm to solve it.  相似文献   

12.
We address the single-machine batch scheduling problem with the objective of minimizing the total setup cost. This problem arises when there are n jobs that are partitioned into F families and when setup operations are required whenever the machine switches from processing a job of one family to processing a job of another family. We assume that setups do not require time but are associated with a fixed cost which is identical for all setup operations. Each job has a processing time and an associated deadline. The objective is to schedule all jobs such that they are on time with respect to their deadlines and the total setup cost is minimized. We show that the decision version of this problem is NP-complete in the strong sense. Furthermore, we present properties of optimal solutions and an \(O(n\log n+nF)\) algorithm that approximates the cost of an optimal schedule by a factor of F. The algorithm is analyzed in computational tests.  相似文献   

13.
This paper considers a scheduling problem for parallel burn-in ovens in the semiconductor manufacturing industry. An oven is a batch processing machine with restricted capacity. The batch processing time is set by the longest processing time among those of all the jobs contained in the batch. All jobs are assumed to have the same due date. The objective is to minimize the sum of the absolute deviations of completion times from the due date (earliness–tardiness) of all jobs. We suggest three decomposition heuristics. The first heuristic applies the exact algorithm due to Emmons and Hall (for the nonbatching problem) in order to assign the jobs to separate early and tardy job sets for each of the parallel burn-in ovens. Then, we use job sequencing rules and dynamic programming in order to form batches for the early and tardy job sets and sequence them optimally. The second proposed heuristic is based on genetic algorithms. We use a genetic algorithm in order to assign jobs to each single burn-in oven. Then, after forming early and tardy job sets for each oven we apply again sequencing rules and dynamic programming techniques to the early and tardy jobs sets on each single machine in order to form batches. The third heuristic assigns jobs to the m early job sets and m tardy jobs sets in case of m burn-in ovens in parallel via a genetic algorithm and applies again dynamic programming and sequencing rules. We report on computational experiments based on generated test data and compare the results of the heuristics with known exact solution for small size test instances obtained from a branch and bound scheme.  相似文献   

14.
In various industries jobs undergo a batching, or burn in, process where different tasks are grouped into batches and processed simultaneously. The processing time of each batch is equal to the longest processing time among all jobs contained in the batch. All to date studies dealing with batching machines have considered fixed job processing times. However, in many real life applications job processing times are controllable through the allocation of a limited resource. The most common and realistic model assumes that there exists a non-linear and convex relationship between the amount of resource allocated to a job and its processing time. The scheduler?s task when dealing with controllable processing times is twofold. In addition to solving the sequencing problem, one must establish an optimal resource allocation policy. We combine these two widespread models on a single machine setting, showing that both the makespan and total completion time criteria can be solved in polynomial time. We then show that our proposed approach can be applied to general bi-criteria objective comprising of the makespan and the total completion time.  相似文献   

15.
The problem of scheduling N jobs on M uniform parallel machines is studied. The objective is to minimize the mean tardiness or the weighted sum of tardiness with weights based on jobs, on periods or both. For the mean tardiness criteria in the preemptive case, this problem is NP-hard but good solutions can be calculated with a transportation problem algorithm. In the nonpreemptive case the problem is therefore NP-hard, except for the cases with equal job processing times or with job due dates equal to job processing times. No dominant heuristic is known in the general nonpreemptive case. The author has developed a heuristic to solve the nonpreemptive scheduling problem with unrelated job processing times. Initially, the algorithm calculates a basic solution. Next, it considers the interchanges of job subsets to equal processing time sum interchanging resources (i.e. a machine for a given period). This paper models the scheduling problem. It presents the heuristic and its result quality, solving 576 problems for 18 problem sizes. An application of school timetable scheduling illustrates the use of this heuristic.  相似文献   

16.
In this article, the job shop scheduling problem with two batch-processing machines is considered. The machines have limited capacity and the jobs have non-identical job sizes. The jobs are processed in batches and the total size of each batch cannot exceed the machine capacity. The processing times of a job on the two machines are proportional. We show the problem of minimising makespan is NP-hard in the strong sense. Then we provide an approximation algorithm with worst-case ratio no more than 4, and the running time of the algorithm is O(n?log?n). Finally, the performance of the proposed algorithm is tested by different levels of instances. Computational results demonstrate the effectiveness of the algorithm for all the instances.  相似文献   

17.
We study single machine batch scheduling with release times. Our goal is to minimize the sum of weighted flow times (or completion times) and delivery costs. Since the problem is strongly $\mathcal{NP}$ -hard even with no delivery cost and identical weights for all jobs, an approximation algorithm is presented for the problem with identical weights. This uses the polynomial time solution we give for the preemptive version of the problem. We also present an evolutionary metaheuristic algorithm for the general case. Computational results show very small gaps between the results of the metaheuristic and the lower bound.  相似文献   

18.
This paper deals with a single-machine scheduling problem in which jobs are released in different points in time but delivered to customers in batches. A due window is associated with each job. The objective is to schedule the jobs, to form them into batches and to decide the delivery date of each batch so as to minimize the sum of earliness, tardiness, holding, and delivery costs. A mathematical model of the problem is presented, and a set of dominance properties is established. To solve this NP-hard problem efficiently, a solution method is then proposed by incorporating the dominance properties with an imperialist competitive algorithm. Unforced idleness and forming discontinuous batches are allowed in the proposed algorithm. Moreover, the delivery date of a batch may be decided to be later than the completion time of the last job in the batch. Finally, computational experiments are conducted to evaluate the proposed model and solution procedure, and results are discussed.  相似文献   

19.
Deteriorating jobs scheduling problems have been widely studied recently. However, research on scheduling problems with deteriorating jobs has rarely considered explicit setup times. With the current emphasis on customer service and meeting the promised delivery dates, we consider a single-machine scheduling problem to minimize the number of late jobs with deteriorating jobs and setup times in this paper. We derive some dominance properties, a lower bound, and an initial upper bound by using a heuristic algorithm to speed up the search process of the branch-and-bound algorithm. Computational experiments show that the algorithm can solve instances up to 1000 jobs in a reasonable amount of time.  相似文献   

20.
In this paper, we address the problem of scheduling nn jobs in an ss-stage hybrid flowshop with batch production at the last stage with the objective of minimizing a given criterion with respect to the completion time. The batch production at stage ss is referred to as serial batches by Hopp and Spearman where the processing time of a batch is equal to the sum of the processing times of all jobs included in it. This paper establishes an integer programming model and proposes a batch decoupling based Lagrangian relaxation algorithm for this problem. In this algorithm, after capacity constraints are relaxed by Lagrangian multipliers, the relaxed problem is decomposed based on a batch, unlike the commonly used job decoupling, so that it can be decomposed into batch-level subproblems, each for a specific batch. An improved forward dynamic programming algorithm is then designed for solving these subproblems where all operations within a batch form an in-tree structure and the precedence relations exist not only between the operations of a job but between the jobs in this batch at the last stage. A computational comparison is provided for the developed algorithm and the commonly used Lagrangian relaxation algorithm which, after capacity constraints and precedence relations within a batch are relaxed, decomposes the relaxed problem into job-level subproblems and solves the subproblems by using dynamic programming. Numerical results show that the designed Lagrangian relaxation method provides much better schedules and converges faster for small to medium sized problems, especially for larger sized problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号