首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 722 毫秒
1.
2.
Two different versions of finite strip method, namely spline and semi-analytical methods, are developed for analyzing the geometrically non-linear response of rectangular composite laminated plates of arbitrary lay-up to progressive end-shortening in their plane and to pressure loading. The plates are assumed to be thin so that the analysis can be carried out based on the classical plate theory. The in-plane lateral deflection υ is allowed at the loaded ends of the plate, whilst the lateral expansion of the unloaded edges is either free or completely prevented. Geometric non-linearity is introduced in the strain–displacement equations in the manner of the von Karman assumptions. The formulations of the finite strip methods are based on the concept of the principle of the minimum potential energy. A number of applications involving isotropic plates, symmetric and unsymmetric cross-ply laminates are described to investigate the effects of pressure loading. The comparison between the two sets of results obtained by different finite strip methods is very good. The study of the results revealed that the response of the laminates is significantly influenced by the application of the normal pressure loading. Particularly, the response of unsymmetric laminates is strongly affected by the sign of the normal pressure loading.  相似文献   

3.
A finite strip method is presented for determining the initial buckling stresses of any structure consisting of a series of thin flat isotropic plates rigidly connected together at their longitudinal edges. Each plate may be subjected to a combination of longitudinal and transverse compression, longitudinal in-plane bending, and shear, and it is assumed that the buckling mode, of whatever type, is sinusoidal in the longitudinal direction. Due to the presence of shear, the perturbation forces and displacements which occur at the edges of component plates during buckling are out of phase, and this is accounted for by defining their magnitudes in terms of complex quantities. Stiffness matrices relating the amplitudes of these forces and displacements are derived using an approximate method based upon assumed displacement functions across the width of the plate. It is shown how the method can be used to calculate natural frequencies of prismatic structures, and finally an indication of the accuracy of the method is given together with some illustrative results.  相似文献   

4.
Rectangular plates made of laminated composite material because of the advantageously high strength and stiffness to weight ratio are used frequently as structural component in various branches of engineering, chief of which are aerospace and marine engineering. Design concepts of these plates that lead to the increase in the buckling load can directly lower the structural cost and/or weight. The finite strip method is one of a number of procedures which can be used to solve the buckling problem of plate structures. In the present work the main concern is with the buckling behavior of plates with simply supported ends subjected to uni-axial pure compression loads. The solution is sought by implementing the higher order semi-analytical finite strip method which incorporates additional degrees of freedom for each nodal line by using Reddy’s higher order plate theory. Therefore the current method is more universal in dealing with different plate thicknesses. In addition, in this semi-analytical finite strip method, all the displacements are postulated by the appropriate harmonic shape functions in the longitudinal direction and polynomial interpolation functions in the transverse direction. The solution is based on the concept of principle of minimum potential energy and an eigen-value analysis is subsequently carried out. From the presented results it can be concluded that the higher order semi-analytical finite strip method is very reliable for the preliminary design of composite plates especially in the case of buckling analysis of relatively thick plates.  相似文献   

5.
非线性样条有限条法及其应用   总被引:1,自引:0,他引:1  
陈士林  方山峰 《工程力学》1993,10(1):119-128
本文基于完全的增量形式Lagrange描述法,根据虚功原理导出了大挠度弹塑性样条有限条法,用以分析板、壳和薄壁结构与构件的几何与材料非线性问题。本文方法适用于任意边界支承条件和加荷方式,可以计入任意形式的初始缺陷的影响以及沿厚度方向的塑性开展。所给算例表明,该方法具有计算量少.连续性强、精度高、应用广泛等优点.  相似文献   

6.
A postbuckling analysis is presented for a functionally graded cylindrical thin shell of finite length subjected to compressive axial loads and in thermal environments. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations are based on the classical shell theory with von Kármán–Donnell-type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical shells. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of axially-loaded, perfect and imperfect, cylindrical thin shells with two constituent materials and under different sets of thermal environments. The effects played by temperature rise, volume fraction distribution, shell geometric parameter, and initial geometric imperfections are studied.  相似文献   

7.
As a first endeavor, the free vibration of functionally graded (FG) arbitrary straight-sided quadrilateral plates under thermal environment and based on the first order shear deformation theory (FSDT) is presented. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The initial thermal stresses are evaluated by solving the thermo-elastic equilibrium equations. The solution procedure is based on transformation of the governing equations from physical domain to computational domain and then the discretization of the spatial derivatives by employing the differential quadrature method (DQM) as an efficient and accurate numerical tool. The accuracy of the present method is demonstrated by studying the free vibration of isotropic and FG plates with various shapes and comparing the solutions obtained against existing results in literature. Then, the effects of thickness-to-length ratio, volume fraction index, temperature rise, geometrical shape and the boundary conditions on the frequency parameters of the plate are studied.  相似文献   

8.
A geometrically non-linear finite strip for the post-buckling analysis of geometrically perfect thin symmetric cross-ply laminated plates under uniform end shortening is presented in this paper. The formulation of the aforementioned finite strip is based on the concept of the semi-energy approach. In this method, the out-of-plane displacement of the finite strip is the only displacement which is postulated by a deflected form. The postulated deflected form is substituted into von Kármán’s compatibility equation which is solved exactly to obtain the corresponding forms of the mid-plane stresses and displacements. The solution of von Kármán’s compatibility equation and the postulated out-of-plane deflected form are then used to evaluate the potential energy of the related finite strip. Finally, by invoking the Principle of Minimum Potential Energy, the equilibrium equations of the finite strip are derived. The developed finite strip is then applied to analyze the post-local-buckling behavior of thin flat laminates. The results are discussed in detail and compared with those obtained from finite element method (FEM) of analysis. It should be mentioned that the FEM analysis was carried out employing the general purpose ANSYS package. The study of the results has provided confidence in the validity and capability of the developed finite strip in handling the post-buckling problem of symmetric cross-ply laminated plates.  相似文献   

9.
This paper presents a new method for determining the natural frequencies and mode shapes for the free vibration of thin elastic plates using the boundary element and dual reciprocity methods. The solution to the plate's equation of motion is assumed to be of separable form. The problem is further simplified by using the fundamental solution of an infinite plate in the reciprocity theorem. Except for the inertia term, all domain integrals are transformed into boundary integrals using the reciprocity theorem. However, the inertia domain integral is evaluated in terms of the boundary nodes by using the dual reciprocity method. In this method, a set of interior points is selected and the deflection at these points is assumed to be a series of approximating functions. The reciprocity theorem is applied to reduce the domain integrals to a boundary integral. To evaluate the boundary integrals, the displacements and rotations are assumed to vary linearly along the boundary. The boundary integrals are discretized and evaluated numerically. The resulting matrix equations are significantly smaller than the finite element formulation for an equivalent problem. Mode shapes for the free vibration of circular and rectangular plates are obtained and compared with analytical and finite element results.  相似文献   

10.
Generalized plane strain state is assumed and stress-based finite strip method is formulated for analysis of unidirectional laminates with matrix microcracks. Total complementary potential energy is minimized and fourth-order Euler Lagrange governing equations are presented. This stress-based generalized plane strain approach analyzes general layup and loading conditions. It provides flexibility to control the number of finite strip nodal lines within each lamina; hence, stress behavior can be predicted across each lamina at the desired location of the structure. Along with all of the capabilities which are common with finite strip methodology based on plane strain assumption, this current work has extended the analysis of the cracked laminate. For example, by incorporating behavior of the out of the plane shear stress, boundary conditions including natural boundary conditions are imposed appropriately to solve governing Euler's equations. Results are compared with previously developed displacement-based formulation in the literature for cracked laminates. It has already been shown that a stress-based plane strain approach enhances variation-based cracked laminate analysis where only the case of cross-ply laminate under tension is considered. This current work applies generalized plane strain-based finite strip methodology to carry out analysis under different loading conditions.  相似文献   

11.
The isoparametric spline finite strip method was recently applied by the authors to the linear elastic in‐plane stress analysis of perforated thin‐walled structures. In this paper, the application of the method is extended to the bending of perforated plates. The paper describes the theory of the isoparametric spline finite strip method in the context of Mindlin plate bending theory. It sets out the strain–displacement and stress–strain relationships and derives expressions for the local and global stiffness matrices. The reliability of the method is demonstrated by comparisons with finely meshed finite element analysis results. Square plates in bending containing openings of different shapes are analysed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A new formulation of strip element method based on classical laminated plate theory is derived for the bending analysis of laminated composite plates. In this method, an infinite-length plate is first considered and is discretized into a set of strip elements in the width direction. The principle of minimum potential energy is applied to obtain the ordinary differential equations, which are functions of only the coordinate in the length direction. These differential equations can then be solved analytically. The boundary conditions on the length coordinate direction are finally used to determine the deflection distribution in the plate. The strip element solutions are presented for a rectangular laminated composite plate with various boundary conditions and load cases. The solutions are compared with those of the Rayleigh-Ritz method, and very good agreement is obtained.  相似文献   

13.
Transient thermal stresses in the strip with boundaries oblique to the functionally graded direction are studied theoretically. The transient temperature and the transient thermal stresses are derived by the use of the variable separation and the stress function method. The material properties are assumed to be exponential functions of the position along the functionally graded direction. The prescribed surface heat flux is given for temperature condition, and the initial temperature is assumed to be zero over the strip. The strip is free of surface traction for mechanical boundary condition. The numerical calculations are carried out for ZrO2 /Ti-6Al-4V functionally graded materials. The numerical results of temperature and thermal stresses are illustrated with the lapse of time for certain oblique angles.  相似文献   

14.
J. Loughlan   《Composite Structures》2002,57(1-4):473-482
The compressive stability of anti-symmetric angle-ply laminated plates with particular reference to the degrading influence of membrane–flexural coupling is reported in this paper. The degree of membrane–flexural coupling in the laminated composite plates is varied, essentially, by altering the ply-angle and the number of plies in the laminated stack for a given composite material system. The coupled compressive buckling solutions are determined in the paper using the finite strip method of analysis and the buckling displacement fields of the strip formulation are those which are able to provide zero in-plane normal movement at the edge boundaries of the laminated plates.

Results are given for anti-symmetric angle-ply laminated plates subjected to uniaxial compression and these have been obtained from fully converged finite strip structural models. Validation of the finite strip formulation is indicated in the paper through comparisons with exact solutions where appropriate. Increasing the number of plies in the laminated system is seen to reduce the degree of coupling and the critical stress levels are noted to tend towards the plate orthotropic solutions. The ply-angle corresponding to the optimised buckling stress for any particular laminate is noted in the paper to be influenced by the support boundary conditions at the plates unloaded edges. For any particular laminate the minimum critical buckling stress and corresponding natural half-wavelength of the buckling mode are shown to be highly sensitive to ply-angle variation.

Some post-buckling results are presented in the paper and these have been determined using the finite element method of analysis. The influence of membrane–flexural coupling is shown to be significant throughout the compressive post-buckling history of the laminated plates. The optimised ply-angle with regard to the critical compressive buckling stress of square simply supported anti-symmetric angle-ply laminates is shown to be less effective in the post-buckling range with regard to post-buckled compressional stiffness.  相似文献   


15.
本文建立了一种杂交有限条法,并应用于各向同性板和各向异性板。这工作是基于修正余能原理进行的。在有限条列式的过程中,在条中假设应力场而在条的边界上假设位移场。数值计算表明,过种方法是合理的,能较快地逼近准确解。   相似文献   

16.
The nonlinear dynamic behavior of simply supported tapered sandwich plates subjected to air blast loading is investigated theoretically and numerically. The plate is supposed to have both tapered core and tapered laminated face sheets and be subjected to uniform air blast load. The theory is based on a sandwich plate theory, which includes von Kármán large deformation effects, in-plane stiffnesses, inertias and shear deformations. The sandwich plate theory for plates with constant thickness which have one-layered face sheets found in the literature is developed to analyze the tapered sandwich plates with multi-layered face sheets. The equations of motion are derived by the use of the virtual work principle. Approximate solution functions are assumed for the space domain and substituted into the equations. The Galerkin method is used to obtain the nonlinear differential equations in the time domain. The finite difference method is applied to solve the system of coupled nonlinear equations. The tapered sandwich plate subjected to air blast load is also modelled by using the finite element method. The displacement–time and strain–time histories are obtained. The theoretical results are compared with finite element results and are found to be in an agreement.  相似文献   

17.
This paper presents a new finite element formulation, referred to as reference surface element (RSE) model, for numerical prediction of dynamic behaviour of delaminated composite beams and plates using the finite element method. The RSE formulation can be readily incorporated into all elements based on the Timoshenko beam theory and the Reissner–Mindlin plate theory taking into account the transverse shear deformations. The ‘free model' and ‘constrained model' for dynamic analysis of delaminated composite beams and/or plates have been unified in this RSE formulation. The RSE formulation has been applied to an existing 2-node Timoshenko beam element taking into account the transverse shear deformations and the bending–extension coupling. Frequencies and vibration mode shapes are determined through solving an eigenvalue problem. Numerical results show that the present RSE model is reliable and practical when used to predict frequencies and mode shapes of delaminated composite beams. The RSE formulation has also been used to investigate the effects of the number, size and interfacial loci of delaminations on frequencies and mode shapes of composite beams.  相似文献   

18.
Non-linear buckling and postbuckling of a moderately thick anisotropic laminated cylindrical shell of finite length subjected to lateral pressure, hydrostatic pressure and external liquid pressure has been presented in the paper. The material of each layer of the shell is assumed to be linearly elastic, anisotropic and fiber-reinforced. The governing equations are based on a higher order shear deformation shell theory with von Kármán–Donnell-type of kinematic non-linearity and including the extension/twist, extension/flexural and flexural/twist couplings. The non-linear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, anisotropic laminated cylindrical shells with different values of shell parameters and stacking sequence. The results confirm that there exists a circumferential stress along with an associate shear stress when the shell is subjected to external pressure.  相似文献   

19.
In the present paper the postbuckling response of symmetrically and antisymmetrically laminated composite plates subjected to a combination of uniform temperature distribution through the thickness and in-plane compressive edge loading is presented. The structural model is based on a higher-order shear deformation theory incorporating von Karman nonlinear strain displacement relations. Adopting the Galerkin procedure, the governing nonlinear partial differential equations are converted into a set of nonlinear algebraic equations, which are solved using the Newton–Raphson iterative procedure. The critical buckling temperature is obtained from the solution of the linear eigenvalue problem. Postbuckled equilibrium paths are obtained for symmetrically laminated cross-ply, quasi-isotropic and antisymmetric angle-ply composite plates with and without initial geometric imperfections. Modal participation of each mode in the postbuckling deflection is reported using a multi-term Galerkin procedure.  相似文献   

20.
The present study investigates the elastic stability of skew laminated composite plates subjected to biaxial inplane follower forces by the finite element method. The plate is assumed to follow first-order shear deformation plate theory (FSDPT). The kinetic and strain energies of skew laminated composite plate and the work done by the biaxial inplane follower forces are derived by using tensor theory. Then, by Hamilton's principle, the dynamic mathematical model to describe the free vibration of this problem is formed. The finite element method and the isoparametric element are utilized to discretize the continuous system and to obtain the characteristic equations of the present problem. Finally, natural vibration frequencies, buckling loads (also the instability types) and their corresponding mode shapes are found by solving the characteristic equations. Numerical results are presented to demonstrate the effects of those parameters, such as various inplane force combinations, skew angle and lamination scheme, on the elastic stability of skew laminated composite plates subjected to biaxial inplane follower forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号