首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel amphiphilic heterograft copolymers consisting of phosphoester functionalized PEG (phosPEG) and PCL (phosPCL) were synthesized by the ring‐opening polymerization via “grafting through” method. The heterograft structure and thermal properties of these copolymers with various compositions were characterized by 1H‐NMR, 31P NMR, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) in detail. These amphiphilic copolymers could self‐assemble into micellar structures in aqueous solution, and their critical micellization concentrations (CMC) were determined to be 0.69–1.25 mg/L by fluorescence technique. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements show that these heterograft copolymer micelles are spherical in shape with the particle size ranging from 20 to 60 nm, which has potential in biomedical application. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
pH‐responsiveness is highly desirable in the stimuli‐responsive controlled release because of the distinct advantages of the fast response of pH‐triggered release and the available pH‐difference between intra‐ and extra‐cells. The present work reported a kind of novel pH‐responsive polymeric micelles, which was derived from biopolymer of 6‐O‐dodecyl‐chitosan carbamate (DCC) and evaluated as gene‐controlled release vector. The amphiphilic and amino‐rich DDC was synthesized through a protection‐graft‐deprotection method. 13C CP/MAS NMR, FTIR, and elemental analysis identified that dodecyls were chemoselectively grafting at 6‐hydroxyls of chitosan via the pH‐responsive bonds of carbamate, and the substitute degree (SD) was 14%. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) showed that DCC self‐assembled into polymeric micelles in aqueous solutions. The DCC polymeric micelles formed complexes with pDNA, which was elucidated by Gel retardation, TEM, and DLS. Transfection and cytotoxicity assays in A549 cells showed that DCC polymeric micelles were suitable for gene delivery. The improved transfection was attributed to the pH‐responsiveness and the moderate pDNA‐binding affinity, which led to easier release of pDNA intra‐cells. The synthesized DCC polymeric micelles might be a promising and safe candidate as nonviral vectors for gene delivery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42469.  相似文献   

3.
The aim of research is to develop potential tumor‐targeted circulation‐prolonged macromolecular magnetic resonance imaging (MRI) contrast agents without the use of low molecular gadolinium (Gd) ligands. The contrast agents were based on polymer–metal complex nanoparticles with controllable particle size to achieve the active and passive tumor‐targeted potential. In particular, poly (amidoamine) (PAMAM) dendrimer with 32 carboxylic groups was modified with folate‐conjugated poly (ethyleneglycol) amine (FA‐PEG‐NH2, Mw: 2 k and 4 kDa). FA‐PEG‐PAMAM‐Gd macromolecular MRI contrast agents were prepared by the complex reaction between the carboxylic groups in PAMAM and GdCl3. The structure of FA‐PEG‐PAMAM‐COOH was confirmed by nuclear magnetic resonance (1H‐NMR), Fourier transform infrared (FTIR) spectra, and electrospray ionization mass spectra (ESI‐MS). The mass percentage content of Gd (III) in FA‐PEG‐PAMAM‐Gd was measured by inductively coupled plasma‐atomic emission spectrometer (ICP‐AES). The sizes of these nanoparticles were about 70 nm measured by transmission electron microscopy, suggestion of their passive targeting potential to tumor tissue. In comparison with clinically available small molecular Gadopentetate dimeglumine, FA‐PEG‐PAMAM‐Gd showed comparable cytotoxicity and higher relaxation rate, suggestion of their great potential as tumor‐targeted nanosized macromolecular MRI contrast agents due to the overexpressed FA receptor in human tumor cell surfaces. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid–polyethylene glycol/gadolinium–diethylenetriamine-pentaacetic acid (PLA–PEG/Gd–DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA–PEG/Gd–DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA–PEG nanoparticles and the commercial contrast agent, Gd–DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA–PEG/Gd–DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was −12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA–PEG/Gd–DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed (r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd–DTPA. PLA–PEG/Gd–DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA–PEG/Gd–DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent.  相似文献   

5.
A series of methyl acrylate‐acrylic acid amphiphilic triblock copolymers (PMA‐PAA‐PMA) were prepared by solution polymerization using S,S′‐bis (α,α‐dimethy1acetic acid) trithiocarbonate (BDAT) as a reversible addition fragmentation chain transfer (RAFT) agent and methyl acrylate (MA) as the first monomer. The triblock copolymers and their common MA homopolymer precursors were characterized in terms of their compositions, molecular weights and behavior at the air–water interface using 1H‐NMR spectroscopy, thermogravimetric analysis, gel permeation chromatography, surface tension, transmission electron microscopy (TEM) and dynamic light scattering respectively. The results indicated that PMA‐PAA‐PMA was successfully synthesized through RAFT polymerization. The polydispersity index (PDI) decreased when the molar ratio [n(MA)/n(AA)] increased, the lowest PDI was obtained at 5.23 wt% RAFT and the molecular weights were consistent with the theoretical value as the RAFT agent percentage varied. The polymer neutralized by sodium hydroxide solution shows a low critical micelle concentration (CMC), which was <10?2 mol L?1 in water. The Amin values increased and showed a maximum with decreased AA chain length. TEM showed that the neutralized polymer formed a special vesicle structure with large pore structure which led to a low CMC and surface tension of water.  相似文献   

6.
Long‐circulating liposomes have been widely used to enhance efficacy of gene therapy. Antisense therapy might increase the efficacy of radiation or chemotherapy; therefore, we undertook to optimize the composition of the liposomal delivery vehicles. The radiolabeling efficiency, radiochemistry purity, and specific radioactivity of radioiodinated antisense oligonucleotides (ASON) were 71.66 ± 7.73, 98.33 ± 0.39%, 4.09 ± 0.11 MBq/nmol. Radioiodinated ASON remained stable in 0.01 M HEPES buffer and human serum even after incubation for 4 hours. Mean diameter of the anionic long‐circulating liposomes (ALCL) was 504 ± 31.76 nm with a polydispersity index (PDI) of 0.107 ± 0.008 before extrusion, 115 ± 8.5 nm with a PDI of 0.103 ± 0.002 after extrusion. The zeta potential of ALCL was ?29.23 ± 0.45 mV. ALCL prepared for this study provided 70.28 ± 1.84% encapsulation efficiency. Compared with other liposome formulations, the ALCL mediated enhanced cellular uptake (32.51 ± 1.44%) by MCF‐7 breast cancer cells (p<0.05). Practical applications: Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. LCL have become a commonly used carrier for gene therapy recently. ALCL are promising for the mediated radiation and antisense therapy for breast cancer which is the leading cause for women.  相似文献   

7.
To develop a theranostic agent for diagnostic imaging and treatment of  hepatocellular carcinoma (HCC), poly(HPMA)‐APMA‐DTPA‐99mTc (HPMA: N‐(2‐hydroxypropyl methacrylamide; APMA: N‐(3‐aminopropyl)methacrylamide; DTPA: diethylenetriaminepentaacetic acid) and DTPA‐99mTc were synthesized and characterized, and their HCC targeting was tested by in vitro cellular uptake and in vivo tumor imaging in this study. Radioactivity of HCC cells incubated with poly(HPMA)‐APMA‐DTPA‐99mTc was significant higher (16.40%) than that of the cells incubated with DTPA‐99mTc (2.98%). Scintigraphic images of HCC in mice obtained at 8 h after injection of poly(HPMA)‐APMA‐DTPA‐99mTc showed increased radioactivity compared with that in mice injected with DTPA‐99mTc. The results of postmortem tissue radioactivity assay demonstrated higher radioactivity of HCC tumor tissues (2.69 ± 0.15% ID/g) from the tumor‐bearing mice injected with poly(HPMA)‐APMA‐DTPA‐99mTc compared with that of HCC tumor tissues in the tumor‐bearing mice injected with DTPA‐99mTc (0.83 ± 0.03 %ID/g), (P <0.001). These results first directly confirm the significant passive hepatocellular tumor targeting of HPMA copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
The aim in this study is to synthesize amphiphilic linear-dendritic-linear block copolymers consisting of a poly ?-caprolactone linear block, poly(amino-ester) dendritic block and m-PEG linear block. G1, G2 and G3 dendrons were produced by sequential acrylation and Micheal addition reactions, using required amounts of acryloyl chloride and diethanolamine respectively to achieve quantitative growth. Amphiphilic dendrons were synthesized from the reaction of hydroxyl group of G1, G2 and G3 with mPEG-adipoyl chloride and their structures were characterized by FT-IR and 1H NMR spectroscopy. The amphiphilic dendrons can self-assemble and form micelles in water. Their critical micelle concentration (CMC), particle size and zeta potential were determined by fluorescence spectroscopy and dynamic light scattering, respectively. Convergent dendrimers were prepared by self-assembly of the dendrons around oleic acid-stabilized Fe3O4 nanoparticles via the ligand exchange method and their morphologies were characterized by transmission electron microscopy (TEM). The in-vitro release behavior of quercetin from dendrimers and hydrolytic degradation of them were investigated at two pHs (7.4 and 5.8).  相似文献   

9.
A series of amphiphilic block copolymers, polymethyl methacrylate (PMMA)‐b‐poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA), were synthesized by atom transfer radical polymerization (ATRP) method. Surface tension, dynamic light scattering (DLS), transmission electron microscope (TEM), and atomic force microscopy (AFM) studies were performed to investigate the aqueous micellar behavior of these block amphiphiles. At a fixed degree of polymerization (DP) of PMMA block (DP = 55), the PDMAEMA block length was found to have a significant influence on the critical micelle concentration (cmc) values and hydrodynamic size of aggregates. An increase in the DP of PDMAEMA from 11 to 337, resulted in a decrease in the cmc from 1.44 × 10?5 to 5.81 × 10?7 M (a factor of almost 24.8), and a decrease in the Z (2Rh) from 85.5 to 15.5 nm (pH = 4), respectively. TEM and AFM results indicated that by changing the soluble block lengths, spherical, short rod, crew‐cut, vesicles or large aggregates can be observed in the solution. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
11.
Recently there has been interest in developing imaging contrast media for magnetic resonance imaging (MRI) that contain biologically rare, magnetically active nuclei such as fluorine. In principle, fluorinated contrast agents can be used to generate highly selective 19F magnetic resonance images that can be superimposed over complimentary 1H magnetic resonance images to provide an anatomical context for the fluorinated contrast agent. Additionally, nanoparticles can be made to target various pathological sites via active and passive targeting mechanisms. In this study, fluorinated nanoparticles were produced using a free radical polymerization of vinyl formamide monomers with two different fluorinated monomers. The nanoparticles showed a clear, single 19F‐NMR signal. Additionally, surface amide groups were hydrolyzed to primary amines to yield additional surface reactivity. Fluorinated nanoparticles produced using a free‐radial polymerization method yield a new nanoparticle for 19F‐MRI applications with potential for facile functionalization. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Recently, theranostic candidates that provide a combination of gene delivery and image diagnosis have attracted much interest in medical research. However, there are still many challenges for their clinical applications, such as uncontrollable gene delivery, high cytotoxicity, low transfection efficiency and reduced image contrast. Herein, redox‐responsive polyethyleneimine‐coated magnetic iron oxide nanoparticles (IONs@rPEI) were prepared for both efficient gene delivery and magnetic resonance (MR) imaging. Firstly, crosslinked rPEI was synthesized by Michael addition reaction with N,N‐bis(acryloyl)cystamine, dopamine and low‐molecular‐weight branched PEI. The rPEI was then coated onto IONs by ligand exchange reaction forming IONs@rPEI. The physicochemical properties of the IONs@rPEI, such as chemical structure, size, zeta potential and DNA condensation ability, were investigated. In addition, a rapid degradation of the as‐prepared nanoparticles was observed, which was triggered by reducing glutathione via destruction of disulfide linkages suggesting a potential controllable DNA release in tumor cells. In MR imaging detection, the IONs@rPEI had a high T2 relaxivity of 81 L mmol?1 s?1 indicating a potential usage as MR imaging contrast reagent. In cell assay, the IONs@rPEI exhibited low cytotoxicity and good transfection efficiency. In conclusion, the as‐prepared crosslinked IONs@rPEI can be used as a promising technology platform for gene therapy and MR imaging in theranostics. © 2019 Society of Chemical Industry  相似文献   

13.
Amphiphilic copolymers with cationic hydrophilic moieties and different ratios of hydrophobic portion to hydrophilic portion were designed and synthesized via the combination of hydrosilylation reactions and quaternization reactions. The structures were characterized through Fourier transform infrared spectroscopy, 1H NMR , 13C NMR and gel permeation chromatography. The measurements of critical micelle concentrations, electrical conductivities and zeta potentials indicated that the copolymers could self‐assemble into nanoparticles with charges around the surface in aqueous solution. The sizes of the micelles were between 67 nm and 104 nm detected by dynamic light scattering. The self‐assembled micelles were used as drug carriers to encapsulate a model drug (tocopherol), and their drug‐loading content (DLC ) and efficiency (DLE ) were determined by UV ?visible spectra, resulting in considerable drug‐loading capacity to a tocopherol maximum up to 17.2% (DLC ) and 80.3% (DLE ) with a size of 90 nm. The blank micelles and drug‐loaded micelles displayed a spherical shape detected by transmission electron microscopy, which demonstrated not only the self‐assembly behaviors but also the drug‐loading performances of the cationic amphiphilic copolymers. All the results demonstrated that the cationic amphiphilic copolymers could be used as potential electric‐responsive drug carriers. © 2017 Society of Chemical Industry  相似文献   

14.
Novel derivatives of poly(aspartic acid) conjugated with various amino acids and their amphiphilic copolymers were synthesized and characterized. Methyl esters of various amino acids (in their hydrochloride form) were synthesized from the reaction of amino acids with methanol in the presence of chlorotrimethylsilane (TMSCl). Aminolysis reaction onto polysuccinimide (PSI) using various amino acid methyl esters in the presence of catalyst and the followed hydrolysis provided the corresponding amino acid-conjugated poly(aspartic acid) derivatives in high reaction yield. Amino acid—conjugated amphiphilic analogs were also prepared by introducing hydrophobic alkylamine along with amino acid using a similar procedure. The chemical structures of copolymers were confirmed by FT-IR and 1H NMR spectroscopy. The physicochemical properties of amphiphilic copolymers were characterized using dynamic light scattering (DLS), fluorescence spectroscopy and field emission scanning electron microscopy (FE-SEM). In addition, the in vitro cell viability of the copolymers was examined. These polymers have potential applications in the pharmaceutical and cosmetic fields as delivery vehicles for bioactive molecules.  相似文献   

15.
Colloidal stability of magnetic iron oxide nanoparticles (MNP) in physiological environments is crucial for their (bio)medical application. MNP are potential contrast agents for different imaging modalities such as magnetic resonance imaging (MRI) and magnetic particle imaging (MPI). Applied as a hybrid method (MRI/MPI), these are valuable tools for molecular imaging. Continuously synthesized and in-situ stabilized single-core MNP were further modified by albumin coating. Synthesizing and coating of MNP were carried out in aqueous media without using any organic solvent in a simple procedure. The additional steric stabilization with the biocompatible protein, namely bovine serum albumin (BSA), led to potential contrast agents suitable for multimodal (MRI/MPI) imaging. The colloidal stability of BSA-coated MNP was investigated in different sodium chloride concentrations (50 to 150 mM) in short- and long-term incubation (from two hours to one week) using physiochemical characterization techniques such as transmission electron microscopy (TEM) for core size and differential centrifugal sedimentation (DCS) for hydrodynamic size. Magnetic characterization such as magnetic particle spectroscopy (MPS) and nuclear magnetic resonance (NMR) measurements confirmed the successful surface modification as well as exceptional colloidal stability of the relatively large single-core MNP. For comparison, two commercially available MNP systems were investigated, MNP-clusters, the former liver contrast agent (Resovist), and single-core MNP (SHP-30) manufactured by thermal decomposition. The tailored core size, colloidal stability in a physiological environment, and magnetic performance of our MNP indicate their ability to be used as molecular magnetic contrast agents for MPI and MRI.  相似文献   

16.
Novel amphiphilic ABA‐type poly(D ‐gluconamidoethyl methacrylate)‐b‐polyurethane‐b‐poly(D ‐gluconamidoethyl methacrylate) (PGAMA‐b‐PU‐b‐PGAMA) tri‐block copolymers were successfully synthesized via the combination of the step‐growth and copper‐catalyzed atom transfer radical polymerization (ATRP). Dihydroxy polyurethane (HO‐PU‐OH) was synthesized by the step‐growth polymerization of hexamethylene diisocyanate with poly(tetramethylene glycol). PGAMA‐b‐PU‐b‐PGAMA block copolymers were synthesized via copper‐catalyzed ATRP of GAMA in N, N‐dimethyl formamide at 20°C in the presence of 2, 2′‐bipyridyl using Br‐PU‐Br as macroinitiator and characterized by 1H‐NMR spectroscopy and GPC. The resulting block copolymer forms spherical micelles in water as observed in TEM study, and also supported by 1H NMR spectroscopy and light scattering. Miceller size increases with increase in hydrophilic PGAMA chain length as revealed by DLS study. The critical micellar concentration values of the resulting block copolymers increased with the increase of the chain length of the PGAMA block. Thermal properties of these block copolymers were studied by thermo‐gravimetric analysis, and differential scanning calorimetric study. Spherical Ag‐nanoparticles were successfully synthesized using these block copolymers as stabilizer. The dimension of Ag nanoparticle was tailored by altering the chain length of the hydrophilic block of the copolymer. A mechanism has been proposed for the formation of stable and regulated Ag nanoparticle using various chain length of hydrophilic PGAMA block of the tri‐block copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Since decades, varieties of amphiphilic polymers have been widely investigated for improving aqueous solubility and bioavailability of the hydrophobic drugs. The upcoming approach is to develop more efficient advanced nano-carrier molecules capable of more than drug delivery. Herein, we report the design and synthesis of some novel carrier molecules with multiple applications including drug encapsulation, drug delivery and diagnosis (imaging). Copolymers were synthesized using dimethyl 5-hydroxy/aminoisophthalate, poly(ethylene glycols) and Candida antarctica lipase (CAL-B, Novozym 435). CAL-B selectively catalyses the trans esterification reaction under solvent less condition using primary hydroxyls of poly(ethylene glycols) and leaving behind phenolic hydroxyl for post polymerization modifications. The obtained copolymers were further tethered with perfluorinated aliphatic chains to make them amphiphilic. The synthesized materials were investigated for their micellar behavior, temperature dependent stability (in aqueous solution), encapsulation capacity, and imaging potential by measuring the sensitivity of these perfluorinated materials towards 19F NMR in NMR tube. It was observed that perfluorinated amphiphilic copolymers could encapsulate up to 14% (by wt) of hydrophobic drug and showed decent 19F NMR signals even at a very low concentration. Therefore, these perfluorinated copolymers hold considerable potential for further investigation as advanced nano-carrier molecules for biomedical applications.  相似文献   

18.
Amphiphilic thermo‐responsive multiblock polycarbonates consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) were facilely synthesized using triphosgene as coupling agent. The structures and molecular characteristics of the polycarbonates were confirmed by 1H‐NMR, FT‐IR and Gel permeation chromatography (GPC). The crystallization behavior and thermal properties of the polycarbonates were studied using X‐ray diffraction (XRD), Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Surface tension measurements confirmed that the critical micelles concentration of polymeric micelles were concentration ranges, which varied from about 2–70 mg/L to 5–40 mg/L with increasing PEO/PPO composition ratio from 0.8 to 1. Dynamic light scattering (DLS) experiments showed bimodal size distributions, the aggregates size increased with increasing the concentration of the polycarbonates aqueous solutions. The size of the aggregates acquired from TEM was smaller than that from DLS owing to the fact that TEM gave size of the aggregates in dry state rather than the hydrodynamic diameter. The degradation process revealed that the degradation rate of the aggregates could be accelerated with an increase in temperature. Moreover, the more the polycarbonate was hydrophilic, the faster was its degradation. Rheological measurements suggested that these multiblock polycarbonates were thermo‐responsive and by regulating the PEO/PPO composition ratio they could form a gel at 37°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The clinical applications of multimodal probes are numerous since a few decades. 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) has played an important role in diagnostic and therapeutic areas. The vast applications of DOTA as chelator have been explored in magnetic resonance imaging (MRI) and in radioisotope chemistry. Moreover, the possibility to functionalize the macrocycle with pendant arms has allowed to explore new functionalities as bimodal imaging agents. Different combinations are possible between the different possible imaging techniques like Magnetic Resonance Imaging, Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Optical imaging (OI). The main use of DOTA and its derivatives was for MRI as gadolinium complexes. It was then further extended to the complexation with europium or terbium for optical imaging. Although other chelates are available such as DTPA or NOTA, derivatives of DOTA were often the primary choice due to their versatility. DOTA derivatives can indeed also be complexed with radioisotopes and conjugated to peptides which leads to targeted contrast agents for PET or SPECT. Depending on the chosen imaging modality, a variety of radiometals can be complexed with DOTA, e.i. 64Cu and 68Ga for PET, or 111In and 90Y for SPECT. Conjugation of chromophores to gadolinium complexes of DOTA derivatives can also lead to bimodal agents for MRI and OI. In this review, we will provide the applications of DOTA and its derivatives in different imaging modalities and their clinical applications.  相似文献   

20.
Narrow‐distribution, well‐defined comb‐like amphiphilic copolymers are reported in this work. The copolymers are composed of poly(methyl methacrylate‐co‐2‐hydroxyethyl methacrylate) (P(MMA‐co‐HEMA)) as the backbones and poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) as the grafted chains, with the copolymer backbones being synthesized via atom‐transfer radical polymerization (ATRP) and the grafted chains by oxyanionic polymerization. The copolymers were characterized by gel permeation chromatography (GPC), Fourier‐transform infrared (FT‐IR) spectroscopy and 1H NMR spectroscopy. The aggregation behavior in aqueous solutions of the comb‐like amphiphilic copolymers was also investigated. 1H NMR spectroscopic and surface tension measurements all indicated that the copolymers could form micelles in aqueous solutions and they possessed high surface activity. The results of dynamic light scattering (DLS) and scanning electron microscopy (SEM) investigations showed that the hydrodynamic diameters of the comb‐like amphiphilic copolymer aggregates increased with dilution. Because of the protonizable properties of the graft chains, the surface activity properties and micellar state can be easily modulated by variations in pH. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号