首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbon dioxide (CO2) foam flooding has been shown to enhance oil recovery. However, large-scale adoption has been restricted by issues with transportation of CO2 and equipment corrosion. In situ CO2 foam generation can possibly overcome these issues. In this article, a CO2 sustained-release system was first optimized for the CO2 production rate and production efficiency. Then, the dissolution capacity and plug-removing ability of the sustained-release system were evaluated. Visual experiment and parallel sand pack flooding tests were conducted to verify the formation, propagation of in situ CO2 foam, and the feasibility of this technique. The results indicated that the sustained-release system had benign ability to lower injection pressure and improve injectability. Moreover, in situ CO2 foam flooding could obtain high oil recovery due to favorable mobility control ability, interfacial tension reduction capacity, and heterogeneity improvement. All the experiments demonstrated that the in situ CO2 foam technique has great potential for enhanced oil recovery in the Bohai oilfield.  相似文献   

2.
Laboratory experiments were conducted to determine the effect of oil viscosity on the oil-recovery efficiency in porous media. The pure surfactants (i.e., sodium dodecyl sulfate and various alkyl alcohols) were selected to correlate the molecular and surface properties of foaming solutions with viscosity, and the recovery of oil. Oil-displacement efficiency was measured by water, surfactant-solution and foam-flooding processes, which included 2 types of foams (i.e., air foam and steam foam). A significant increase in heavy-oil recovery was observed by steam foam flooding compared with that by air foam flooding, whereas for light oils, the steam foam and air foam produced about the same oil recovery. An attempt was made to correlate the chain-length compatibility with the surface properties of the foaming agents and oil-recovery efficiency in porous media. For mixed foaming systems (C12 SO4 Na + Cn H2n+1 OH), a minimum in surface tension, a maximum in surface viscosity, a minimum in bubble size and a maximum in oil recovery were observed when both components of the foaming system had the same chain length. These results were explained on the basis of thermal motions (i.e., vibrational, rotational and oscillational) and the molecular packing of surfactants at the gas-liquid interface. The effects of chain-length compatibility and the surface properties of mixed surfactants are relevant to the design of surfactant formulations for oil recovery under given reservoir conditions.  相似文献   

3.
The Yangsanmu oilfield of Dagang is a typical heavy oil reservoir. After the maximum primary production (waterflooding), more than half of the original oil is still retained in the formation. Therefore, the implementation of an enhanced oil recovery (EOR) process to further raise the production scheme is inevitable. In this work, a novel in-situ CO2 foam technique which can be used as a potential EOR technique in this oilfield was studied. A screening of gas producers, foam stabilizers and foaming agents was followed by the study of the properties of the in-situ CO2 foam systems through static experiments. Core-flooding experiments and field application were also conducted to evaluate the feasibility of this technique. The results indicated that the in-situ CO2 foam system can improve both the sweep and displacement efficiencies, due to the capacity of this system in reducing oil viscosity and interfacial tension, respectively. The EOR performance of the in-situ CO2 foam system is better than the single-agent and even binary system (surfactant-polymer) flooding. The filed data demonstrated that the in-situ CO2 technique can significantly promote oil production and control water cuts. These results are believed to be beneficial in making EOR strategies for similar reservoirs.  相似文献   

4.
In underbalanced drilling, a switchable foam fluid is essential to reduce the drilling cost. A switchable foaming agent was synthesized by carbonyl–amine condensation and characterized by Fourier transform infrared and 1H nuclear magnetic resonance (NMR) spectroscopy. Thermogravimetric analysis and differential scanning calorimetry showed that the tolerable temperature limit of the surfactant was 128 °C. The effectiveness of CO2/N2 switching was confirmed by analysis of the electrical conductivity and surface tension. Utilizing the foaming agent, 3 different foam systems (unstable, stable, and hard) were designed for drilling after formula optimization. Experimentally, the self‐circulation indicated that the foaming fluids still maintained great foaming performance even after multiple cycles. The experiment also indicated that the suspension of the foam systems was 50–90 times that of water and had a significant resistance to salts (NaCl, CaCl2). Besides, the foam systems found that the suitable foaming temperature was 40–100 °C and that the hard foam system could maintain the foaming performance up to 120 °C. In the oil resistance experiment, the foaming ability of the foam systems decreased obviously above a kerosene content of 5% (w/v), whereas a certain foaming performance still could be ensured below 10% kerosene.  相似文献   

5.
Microcellular polymeric foam structures have been generated using a pressure‐induced phase separation in concentrated mixtures of supercritical CO2 and styrene‐co‐acrylonitrile (SAN). The process typically generates a microcellular core structure encased by a non‐porous skin. Pore growth occurs through two mechanisms: diffusion of CO2 from polymer‐rich regions into the pores and also through CO2 gas expansion. The effects of saturation pressure, temperature and swelling time on the cell size, cell density and bulk density of the porous materials have been studied. Higher CO2 pressures (hence, higher fluid density) provided more CO2 molecules for foaming, generated lower interfacial tension and viscosity in the polymer matrix, and thus produced lower cell size but higher cell densities. This trend was similar to what was observed in swelling time series. While the average cell size increased with increasing temperature, the cell density decreased. The trend of bulk density was similar to that of cell size. © 2000 Society of Chemical Industry  相似文献   

6.
Nanocellular foaming of polystyrene (PS) and a polystyrene copolymer (PS‐b‐PFDA) with fluorinated block (1,1,2,2‐tetrahydroperfluorodecyl acrylate block, PFDA) was studied in supercritical CO2 (scCO2) via a one‐step foaming batch process. Atom Transfer Radical Polymerization (ATRP) was used to synthesize all the polymers. Neat PS and PS‐b‐PFDA copolymer samples were produced by extrusion and solid thick plaques were shaped in a hot‐press, and then subsequently foamed in a single‐step foaming process using scCO2 to analyze the effect of the addition of the fluorinated block copolymer in the foaming behaviour of neat PS. Samples were saturated under high pressures of CO2 (30 MPa) at low temperatures (e.g., 0°C) followed by a depressurization at a rate of 5 MPa/min. Foamed materials of neat PS and PS‐b‐PFDA copolymer were produced in the same conditions showing that the presence of high CO2‐philic perfluoro blocks, in the form of submicrometric separated domains in the PS matrix, acts as nucleating agents during the foaming process. The preponderance of the fluorinated blocks in the foaming behavior is evidenced, leading to PS‐b‐PFDA nanocellular foams with cell sizes in the order of 100 nm, and bulk densities about 0.7 g/cm3. The use of fluorinated blocks improve drastically the foam morphology, leading to ultramicro cellular and possibly nanocellular foams with a great homogeneity of the porous structure directly related to the dispersion of highly CO2‐philic fluorinated blocks in the PS matrix. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
CO2 foam for enhanced oil‐recovery applications has been traditionally used in order to address mobility‐control problems that occur during CO2 flooding. However, the supercritical CO2 foam generated by surfactant has a few shortcomings, such as loss of surfactant to the formation due to adsorption and lack of a stable front in the presence of crude oil. These problems arise because surfactants dynamically leave and enter the foam interface. We discuss the addition of polyelectrolytes and polyelectrolyte complex nanoparticles (PECNP) to the surfactant solution to stabilize the interface using electrostatic forces to generate stronger and longer‐lasting foams. An optimized ratio and pH of the polyelectrolytes was used to generate the nanoparticles. Thereafter we studied the interaction of the polyelectrolyte–surfactant CO2 foam and the polyelectrolyte complex nanoparticle–surfactant CO2 foam with crude oil in a high‐pressure, high‐temperature static view cell. The nanoparticle–surfactant CO2 foam system was found to be more durable in the presence of crude oil. Understanding the rheology of the foam becomes crucial in determining the effect of shear on the viscosity of the foam. A high‐pressure, high‐temperature rheometer setup was used to shear the CO2 foam for the three different systems, and the viscosity was measured with time. It was found that the viscosity of the CO2 foams generated by these new systems of polyelectrolytes was slightly better than the surfactant‐generated CO2 foams. Core‐flood experiments were conducted in the absence and presence of crude oil to understand the foam mobility and the oil recovered. The core‐flood experiments in the presence of crude oil show promising results for the CO2 foams generated by nanoparticle–surfactant and polyelectrolyte–surfactant systems. This paper also reviews the extent of damage, if any, that could be caused by the injection of nanoparticles. It was observed that the PECNP–surfactant system produced 58.33% of the residual oil, while the surfactant system itself produced 47.6% of the residual oil in place. Most importantly, the PECNP system produced 9.1% of the oil left after the core was flooded with the surfactant foam system. This proves that the PECNP system was able to extract more oil from the core when the surfactant foam system was already injected. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44491.  相似文献   

8.
In this work, the C14-16 alpha olefin sulphonate (AOS) surfactant, octylphenol ethoxylate (TX-100), and methyl bis[Ethyl(Tallowate)]-2-hydroxyethyl ammonium methyl sulphate (VT-90) surfactant were selected as representatives of anionic, nonionic, and cationic surfactant to stabilize foam. The effects of surfactant concentration and gas/liquid injection rates on foam performance were examined by performing a series of oil-free foam flow tests by injecting CO2 and a foaming surfactant simultaneously into sandpacks. Foam flooding was conducted as a tertiary enhanced oil recovery (EOR) method after conventional water flooding and surfactant flooding. Furthermore, a new method was proposed to determine the residual oil saturation. The foam stability in the presence and absence of heavy oil was studied by a comparative evaluation of the mobility reduction factor (FMR) in both cases. The foam fractional flow modelling by Dholkawala and Sarma[36] was modified based on experimental results obtained in this study. The range of the ratio of two important model parameters (Cg/Cc) at various foam qualities was determined and could be used for large-scale predictions. The results showed that during the oil-free foam displacement experiments higher foam apparent viscosities () were attained at lower gas flow rates and the maximum was attained at a total gas and liquid injection rate of 0.25 cm3/min with a gas fractional flow ratio of 0.8 for the foam in the absence of oil. The presence of oil reduced the foam mobility reduction factors (FMR) to different degrees with FMR-without oil / FMR-with oil ranging from 4.25–13.69, indicating that the oil had a detrimental effect on the foam texture. The foam flooding successfully produced an additional 8.1–21.52 % of OOIP, which can be attributed to the combined effect of increasing the pressure gradient and oil transporting mechanisms.  相似文献   

9.
Reinforcing the cavity cell walls of polymer foams using nanoparticles can offer a new era for the property‐structure‐processing field in the development of functionalized ultra‐light components and devices manufactured from foam. When the nanoparticles are exfoliated in polymers, the viscosity substantially increases and thus mixing or foaming usually becomes almost impossible. We use CO2 supercritical fluid (CO2 SCF) for the mixing and foaming of poly(ethylene‐vinyl acetate) copolymer (EVA) with montmorillonite (MMT) nanoplatelets. The in situ evaporation of CO2 induces robust cavity cells of the EVA/MMT nanocomposite foam in a stable form of spherical shapes, which are seldom achieved by other methods. As the bubble grows and becomes stabilized in CO2 SCF, the exfoliated MMT nanoparticles are aligned at the cell walls by the Gibbs adsorption principle to minimize the surface energy at the gas–liquid interface and increase the rupture strength of the cavity walls. It is demonstrated that the developed methodology can be successfully used for foaming EVA containing high vinyl acetate (VA) content (>40%). Since EVA is too soft to construct cell walls of foam using conventional methods, the applicability of the developed methodology is extensively broadened for superior adhesion and compatibility with other materials. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46615.  相似文献   

10.
Inducing differentiation of bone marrow stem cells to generate new bone tissue is highly desirable by controlling the release of some osteoinductive or osteoconductive factors from porous scaffolds. In this study, dexamethasone was selected as a representative of small molecule drugs and dexamethasone‐loading porous poly(lactide‐co‐glycolide) (PLGA) scaffolds were successfully fabricated by supercritical CO2 foaming. Scanning electron microscopy images showed that scaffolds had rough and relatively interconnected pores facilitating cells adhesion and growth. Specially, dexamethasone which was incorporated into PLGA matrix in a molecularly dispersed state could serve as a nucleation agent to be helpful for the formation of interconnected pores. Dexamethasone‐loading porous PLGA scaffolds exhibited sustained release profile, and the delivery of dexamethasone from porous scaffolds could last for up to 2 months. The cumulative released amount of dexamethasone was relevant with drug loading capacity (1.66%–2.95%) and pore structure of scaffolds; while the release behavior was anomalous (non‐Fickian) transport by fitting with the simple exponential equation, which had a diffusional exponent n higher than 0.5. It is feasible to fabricate drug‐loading porous scaffolds by supercritical CO2 foaming with specific pore structure and sustained release profile, which can be well applied in bone tissue engineering. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46207.  相似文献   

11.
In this article, polyimide (PI)/silica nanocomposite nanofoams were prepared by solid‐state foaming using supercritical CO2 as foaming agent. To control the cell size and morphology of the PI/silica foam, the silica nanoparticles as nucleating agent were in situ formation from TEOS via sol‐gel process, which make the silica nanoparticles homogeneously dispersed in PI matrix. The resulting PI/silica nanocomposite nanofoams were characterized by scanning electron microscopy (SEM), the image analysis system attached to the SEM and dielectric properties measurements. In PI/silica nanocomposite nanofoams, one type of novel morphology was shown that each cell contained one silica nanoparticle and many smaller holes about 20–50 nm uniformly located in the cell wall. This special structure could visually prove that the nucleation sites during foaming were formed on the surface of nucleating agents. Compared with those of neat PI foam, the cell size of PI/silica nanocomposite nanofoams was smaller and its distribution was narrower. The dielectric constant of PI/silica nanocomposite nanofoams was decreased because of the incorporation of the air voids into the PI/silica nanofoams. While the porosity of PI/silica nanocomposite nanofoam film was 0.45, the dielectric constant of the film (at 1 MHz) was reduced from 3.8 to about 2.6. Furthermore, the dielectric constant of PI/silica nanofoam films remained stable across the frequency range of 1×102~1×107 HZ. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42355.  相似文献   

12.
于伟波  张强 《应用化工》2012,(3):415-416
泡沫驱作为一项重要的三次采油技术,在降低气油比、增加原油产量、提高波及效率等诸多方面具有很大的发展潜力。对ZS系列泡沫复合驱配方进行了探索性研究,使用Waring Blender法对泡沫复合驱配方的发泡能力和稳定性进行了检测,通过实验筛选出发泡性能好、稳定性强的泡沫复合驱配方。在矿化度NaCl>5 000 mg/L、CaCl2>3 000 mg/L条件下,表现最为优异的配方为ZS-23,在常温(20℃)时,发泡体积达到880 mL,析液半衰期5.3 h以上,加盐后发泡体积达到820 mL,析液半衰期3.5 h以上,均远远好于一般常见的发泡剂。  相似文献   

13.
A resilient, thermosetting foam system with a bio‐based content of 96 wt % (resulting in 81% of C14) was successfully developed. We implemented a pressurized carbon dioxide foaming process that produces polymeric foams from acrylated epoxidized soybean oil (AESO). A study of the cell dynamics of uncured CO2/ AESO foams proved useful to optimize cure conditions. During collapse, the foam's bulk density increased linearly with time, and the cell size and cell density exhibited power‐law degradation rates. Also, low temperature foaming and cure (i.e. high viscosity) are desirable to minimize foam cell degradation. The AESO was cured with a free‐radical initiator (tert‐butyl peroxy‐2‐ethyl hexanoate, Ti ~ 60°C). Cobalt naphtenate was used as an accelerator to promote quick foam cure at lower temperature (40–50°C). The foam's density was controlled by the carbon dioxide pressure inside the reactor and by the vacuum applied during cure. The viscosity increased linearly during polymerization. The viscosity was proportional to the extent of reaction before gelation, and the cured foam's structure showed a dependence on the time of vacuum application. The average cell size increased and the cell density decreased with foam expansion at a low extent of cure; however, the foam expansion became limited and unhomogeneous with advanced reaction. When vacuum was applied at an intermediate viscosity, samples with densities ~ 0.25 g/cm3 were obtained with small (<1 mm) homogeneous cells. The mechanical properties were promising, with a compressive strength of ~ 1 MPa and a compressive modulus of ~ 20 MPa. The new foams are biocompatible. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
The effect of surfactants on aeration performance in stirred tank reactors (STR) at high rates of foaming is studied. The volumetric oxygen transfer coefficient (kLa) and foaming activity estimated as foaming height (Hf) were determined. Biotechnology of lipopeptide biosurfactants from aerobic organisms, e.g., Bacillus subtilis were addressed. Using model solutions of known foam‐generating properties, high‐molecular weight surfactin and low‐molecular weight sodium dodecyl sulphate (SDS), as well as impellers of different types, with flat and fluid‐foil blades, clues on the concentration dependence of STR oxygen transfer and foaming as well as options for foam reduction in the presence of biosurfactant were sought. In response to a two‐fold decrease of surface tension by surfactin, kLa values decreased up to 30 % but remained within the range expected for the mixing system in water; the experiments with SDS showing stronger dependence on surfactant concentration and surface tension. Mixing of surfactant media by a standard six‐blade disc turbine (RT) imposed rate limitations on gassing. A low‐shear impeller Narcissus (NS) could be used to avoid bulk foam outflow, while preserving kLa values that remained unchanged. The ‘power per unit volume' correlation of kLa in stirred tanks is tested in the presence of surfactin.  相似文献   

15.
In this study, biodegradable rigid cellular materials were synthesized from the reaction of malonic acid with epoxidized soybean oil. Malonic acid reacts with two epoxy groups to give a network polymer. In the course of this reaction, initially formed malonic acid monoester (MAME) can decarboxylate and produce CO2, which acts as the blowing agent leading to in situ foaming of the polymer. Epoxide addition and decarboxylation reactions of MAME occur competitively and simultaneously and by controlling their relative rates, foams of controlled density were produced. 1H NMR spectrum of the synthesized foams showed that increasing the temperature increases the rate of decarboxylation reaction of MAME and decreases crosslink density leading to softer and lower density foams. Addition of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a catalyst also increases the rate of decarboxylation. Load deflection curves of the cellular materials showed that decreasing the temperature and addition of DABCO increase compressive modulus of samples. Cell morphology was studied by microscopic images of foam samples that showed that foam samples have a closed cell structure and a wide distribution of cell volume. Soil burial test was done to determine rate of biodegradation of foam samples. A half‐life of 815 days showed that foam samples are highly biodegradable. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
The foam‐breaking characteristics of rotating‐disk mechanical foam‐breakers (MFRDs) fitted to stirred‐tank reactors (STRs) containing various foaming liquids were evaluated. The critical disk rotational speed, Nc, required for foam‐breaking and the liquid hold‐up, ?L, in ascending foam reflected, respectively, the foam‐breaking behaviour of MFRDs and the foaming behaviour of STRs. Empirical equations for the prediction of Nc and ?L, which can be applied independently of the type, concentration and temperature of foaming liquid, were obtained. The foam‐breaking power, Pkc, of MFRDs was also clarified in relation to the level of ?L which is related to the difficulty or ease of mechanical foam‐breaking. © 2001 Society of Chemical Industry  相似文献   

17.
石亚琛  戈薇娜  孙超  李进 《当代化工》2016,(12):2852-2855
针对传统聚合物驱、三元复合驱等驱油体系在中后期油田开采中采油效率不高的问题,提出一种高效空气泡沫驱驱油技术。为验证高效泡沫驱的驱油效果,以延长油田1#地质条件为背景,探讨不同起泡剂浓度、矿化度下对空气泡沫驱的性能影响,从而筛选出空气泡沫驱的最优综合性能,通过驱替实验,对高效泡沫驱驱油机理进行观察。最后通过封堵能力评价验证了空气泡沫驱的性能与驱油机理。  相似文献   

18.
This letter reports on the hydrophobicity and oleophilicity of open‐cell foams from polymer blends prepared by supercritical CO2. A typical bulk density of the foam is measured to be 0.05 g/cm3. The contact angle of the foam with water is determined to be 139.2°. The foam can selectively absorb the diesel from water with the uptake capacity of 17.0 g/g. The foams are technologically promising for application of oil spill cleanup. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4182–4185, 2016  相似文献   

19.
Natural gas foam can be used for mobility control and channel blocking during natural gas injection for enhanced oil recovery, in which stable foams need to be used at high reservoir temperature, high pressure and high water salinity conditions in field applications. In this study, the performance of methane (CH4) foams stabilized by different types of surfactants was tested using a high pressure and high temperature foam meter for surfactant screening and selection, including anionic surfactant (sodium dodecyl sulfate), non-anionic surfactant (alkyl polyglycoside), zwitterionic surfactant (dodecyl dimethyl betaine) and cationic surfactant (dodecyl trimethyl ammonium chloride), and the results show that CH4-SDS foam has much better performance than that of the other three surfactants. The influences of gas types (CH4, N2, and CO2), surfactant concentration, temperature (up to 110°C), pressure (up to 12.0 MPa), and the presence of polymers as foam stabilizer on foam performance was also evaluated using SDS surfactant. The experimental results show that the stability of CH4 foam is better than that of CO2 foam, while N2 foam is the most stable, and CO2 foam has the largest foam volume, which can be attributed to the strong interactions between CO2 molecules with H2O. The foaming ability and foam stability increase with the increase of the SDS concentration up to 1.0 wt% (0.035 mol/L), but a further increase of the surfactant concentration has a negative effect. The high temperature can greatly reduce the stability of CH4-SDS foam, while the foaming ability and foam stability can be significantly enhanced at high pressure. The addition of a small amount of polyacrylamide as a foam stabilizer can significantly increase the viscosity of the bulk solution and improve the foam stability, and the higher the molecular weight of the polymer, the higher viscosity of the foam liquid film, the better foam performance.  相似文献   

20.
A binder system containing polyurethane precursors was used to in situ foam (direct foam) a (La0.6Sr0.4)0.98 (Co0.2 Fe0.8) O3?δ (LSCF) composition for solid oxide fuel cell (SOFC) cathode applications. The relation between in situ foaming parameters on the final microstructure and electrochemical properties was characterized by microscopy and electrochemical impedance spectroscopy (EIS), respectively. The optimal porous cathode architecture was formed with a 70 vol% solids loading within a polymer precursor composition with a volume ratio of 8:4:1 (isocyanate: PEG: surfactant) in a terpineol‐based ink vehicle. The resultant microstructure displayed a broad pore size distribution with highly elongated pore structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号