首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Estimation of Hox gene cluster number in lampreys   总被引:1,自引:0,他引:1  
Hox gene clusters are linked arrays of related homeobox genes with important roles in patterning the main body axis of animal embryos. Almost all invertebrates analyzed in detail, including a cephalochordate, have a single Hox gene cluster. In contrast, mammals have four such clusters inferred to have arisen by duplication. Data from other jawed vertebrates, including teleost fish, suggest they have at least four Hox gene clusters, implying that cluster duplication dates to very early in vertebrate evolution. Lampreys descended from one of the earliest vertebrate lineages and are thus critical in dating the duplication events. Here we analyze the Hox gene complement of a freshwater lamprey, Lampetra, using degenerate PCR. By analysis of the DNA sequences, deduced protein sequences, and by comparison to previous data from the distantly related sea lamprey, we conclude that lampreys have approximately 21 Hox genes from paralogous groups 1-10, plus a group 13 Hox gene. The data support the presence of three Hox gene clusters in lampreys more strongly than they support the presence of one, two or four gene clusters. We discuss how this situation may have arisen in evolution.  相似文献   

2.
3.
Organization into gene clusters is an essential and diagnostic feature of Hox genes. Insect and nematode genomes possess single Hox gene clusters (split in Drosophila); in mammals, there are 38 Hox genes in four clusters on different chromosomes. A collinear relationship between chromosomal position, activation time and anterior expression limit of vertebrate Hox genes suggests that clustering may be important for precise spatiotemporal gene regulation and hence embryonic patterning. Hox genes have a wide phylogenetic distribution within the metazoa, and are implicated in the control of regionalization along the anteroposterior body axis. It has been suggested that changes in Hox gene number and genomic organization played a role in metazoan body-plan evolution, but identifying significant changes is difficult because Hox gene organization is known from only very few and widely divergent taxa (principally insects, nematodes and vertebrates). Here we analyse the complexity and organization of Hox genes in a cephalochordate, amphioxus, the taxon thought to be the sister group of the vertebrates. We find that the amphioxus genome has only one Hox gene cluster. It has similar genomic organization to the four mammalian Hox clusters, and contains homologues of at least the first ten paralogous groups of vertebrate Hox genes in a collinear array. Remarkably, this organization is compatible with that inferred for a direct ancestor of the vertebrates; we conclude that amphioxus is a living representative of a critical intermediate stage in Hox cluster evolution.  相似文献   

4.
Antennapedia class homeobox (Hox) genes specify cell fates in successive anteroposterior body domains in vertebrates, insects and nematodes. The DNA-binding homeodomain sequences are very similar between vertebrate and Drosophila Hox proteins, and this similarity allows vertebrate Hox proteins to function in Drosophila. In contrast, the Caenorhabditis elegans homeodomains are substantially divergent. Further, C. elegans differs from both insects and vertebrates in having a non-segmented body as well as a distinctive mode of development that involves asymmetric early cleavages and invariant cell lineages. Here we report that, despite these differences, Drosophila Hox proteins expressed in C. elegans can substitute for C. elegans Hox proteins in the control of three different cell-fate decisions: the regulation of cell migration, the specification of serotonergic neurons, and the specification of a sensory structure. We also show that the specificity of one C. elegans Hox protein is partly determined by two amino acids that have been implicated in sequence-specific DNA binding. Together these findings suggest that factors important for target recognition by specific Hox proteins have been conserved throughout much of the animal kingdom.  相似文献   

5.
Hox genes establish body pattern throughout the animal kingdom, but the role these genes play at the cellular level to modify and shape parts of the body remains a mystery. We find that the C. elegans Antennapedia homolog, mab-5, sequentially programs many independent events within individual cell lineages. In one body region, mab-5 first switches ON in a lineage to stimulate proliferation, then OFF to specify epidermal structures, then ON in just one branch of the lineage to promote neuroblast formation, and finally OFF to permit proper sense organ morphology. In a neighboring lineage, continuous mab-5 expression leads to a different pattern of development. Thus, this Hox gene achieves much of its power to diversify the anteroposterior axis through fine spatiotemporal differences in expression coupled with a changing pattern of cellular response.  相似文献   

6.
We have cloned, from an oribatid mite, a gene homologous to the zerknült (zen) genes of insects and the Hox 3 genes of vertebrates. Hox genes specify cell fates in specific regions of the body in all metazoans studied and are expressed in antero-posteriorly restricted regions of the embryo. This is true of the vertebrate Hox 3 but not of the zen genes, the insect homologs, and it has been proposed that the zen genes have lost their Hox-like function in the ancestor of the insects. We studied expression of a mite Hox 3/zen homolog and found that it is expressed in a discrete antero-posterior region of the body with an anterior boundary coinciding with that of the chelicerate homolog of the Drosophila Hox gene, proboscipedia, and propose that its loss of Hox function in insects is due to functional redundancy due to this overlap with another Hox gene.  相似文献   

7.
8.
Development of paired appendages at appropriate levels along the primary body axis is a hallmark of the body plan of jawed vertebrates. Hox genes are good candidates for encoding position in lateral plate mesoderm along the body axis and thus for determining where limbs are formed. Local application of fibroblast growth factors (FGFs) to the anterior prospective flank of a chick embryo induces development of an ectopic wing, and FGF applied to posterior flank induces an ectopic leg. If particular combinations of Hox gene expression determine where wings and legs develop, then formation of additional limbs from flank should involve changes in Hox gene expression that reflect the type of limb induced. Here we show that the same population of flank cells can be induced to form either a wing or a leg, and that induction of these ectopic limbs is accompanied by specific changes in expression of three Hox genes in lateral plate mesoderm. This then reproduces, in the flank, expression patterns found at normal limb levels. Hox gene expression is reprogrammed in lateral plate mesoderm, but is unaffected in paraxial mesoderm. Independent regulation of Hox gene expression in lateral plate mesoderm may have been a key step in the evolution of paired appendages.  相似文献   

9.
10.
Retinoids and Hox genes   总被引:1,自引:0,他引:1  
The vertebrate embryonic body plan is constructed through the interaction of many developmentally regulated genes that supply cells with the essential positional and functional information they require to migrate to their appropriate destination and generate the proper structures. Some molecular cues involved in patterning the central nervous system, particularly in the hindbrain, are interpreted by the Hox homeobox genes. Retinoids can affect the expression of Hox genes in cells lines and embryonic tissues; the hindbrain and branchial region of the head are particularly sensitive to the teratogenic effects of retinoic acid. The presence of endogenous retinoic acid, together with the distribution of retinoid binding proteins and nuclear receptors in the developing embryo, strongly suggest that retinoic acid is a natural morphogen in vertebrate development. The molecular basis for the interaction between retinoic acid and the Hox genes has been aided in part by approaches using deletion analysis in transgenic mice carrying lacZ reporter constructs. Such studies have identified functional retinoic acid response elements within flanking sequences of some of the most 3' Hox genes, suggesting a direct interaction between the genes and retinoic acid. Furthermore, as demonstrated using transgenic mice carrying Hoxb-1/lacZ constructs, multiple retinoic acid response elements may cooperate with positive and negative regulatory enhancers to specify pattern formation in the vertebrate embryo. These types of studies strongly support the normal roles of retinoids in patterning vertebrate embryogenesis through the Hox genes.  相似文献   

11.
12.
Reciprocal inductive signals between the endoderm and mesoderm are critical to vertebrate gut development. Sonic hedgehog encodes a secreted protein known to act as an inductive signal in several regions of the developing embryo. In this report, we provide evidence to support the role of Sonic hedgehog and its target genes Bmp-4 and the Abd-B-related Hox genes in the induction and patterning the chick hindgut. Sonic is expressed in the definitive endoderm at the earliest stage of chick gut formation. Immediately subjacent to Sonic expression in the caudal endoderm is undifferentiated mesoderm, later to become the visceral mesoderm of the hindgut. Genes expressed within this tissue include Bmp-4 (a TGF-beta relative implicated in proper growth of visceral mesoderm) and members of the Abd-B class of Hox genes (known regulators of pattern in many aspects of development). Using virally mediated misexpression, we show that Sonic hedgehog is sufficient to induce ectopic expression of Bmp-4 and specific Hoxd genes within the mesoderm. Sonic therefore appears to act as a signal in an epithelial-mesenchymal interaction in the earliest stages of chick hindgut formation. Gut pattern is evidenced later in gut morphogenesis with the presence of anatomic boundaries reflecting phenotypically and physiologically distinct regions. The expression pattern of the Abd-b-like Hox genes remains restricted in the hindgut and these Hox expression domains reflect gut morphologic boundaries. This finding strongly supports a role for these genes in determining the adult gut phenotype. Our results provide the basis for a model to describe molecular controls of early vertebrate hindgut development and patterning. Expression of homologous genes in Drosophila suggest that aspects of gut morphogenesis may be regulated by similar inductive networks in the two organisms.  相似文献   

13.
The alpha 1-, alpha 2-, alpha 3-, and alpha 4-tubulin genes have been mapped by in situ hybridization to the polytene chromosomes of five species representative of the Drosophila montium subgroup geographical distribution. A lambda phage clone containing alpha 1-tubulin specific sequences was isolated from a genomic DNA library of Drosophila auraria and its restriction endonuclease pattern is presented. Both well-characterized heterologous and homologous probes were used to assess orthogonality of gene members between species groups. The in situ hybridization pattern observed in all species studied is consistent with that of Drosophila melanogaster, since alpha 1-, alpha 2-, and alpha 3-tubulin genes are located on the same polytene arm, and the alpha 4-tubulin gene is found on a different arm. Cross-hybridization was observed among alpha 1-, alpha 2-, and alpha 3-tubulin specific sequences in all species studied, using either heterologous or homologous probes. However, unlike D. melanogaster, in all montium species studied, both alpha 1- and alpha 3-tubulin specific probes hybridize to the same polytene band, indicating a clustered organization of the above genes. The chromosomal organization of this gene family would suggest that taxa within the montium subgroup are closer to their common ancestors than are the taxa in the melanogaster species group. A mode of evolution for this gene family in Drosophila is proposed.  相似文献   

14.
The suspension-feeding metazoan subkingdom Lophophorata exhibits characteristics of both deuterostomes and protostomes. Because the morphology and embryology of lophophorates are phylogenetically ambiguous, their origin is a major unsolved problem of metazoan phylogenetics. The complete 18S ribosomal DNA sequences of all three lophophorate phyla were obtained and analyzed to clarify the phylogenetic relationships of this subkingdom. Sequence analyses show that lophophorates are protostomes closely related to mollusks and annelids. This conclusion deviates from the commonly held view of deuterostome affinity.  相似文献   

15.
During the evolution of insects from a millipede-like ancestor, the Hox genes are thought to have promoted the diversification of originally identical body structures. In Drosophila melanogaster, antennae and legs are homologous structures that differ from each other as a result of the Hox gene Antennapedia (Antp), which promotes leg identities by repressing unknown antennal-determining genes. Here we present four lines of evidence that identify extradenticle (exd) and homothorax (hth) as antennal-determining genes. First, removing the function of exd or hth, which is required for the nuclear localization of Exd protein, transforms the antenna into leg; such transformations occur without activation of Antp. Second, hth is expressed and Exd is nuclear in most antennal cells, whereas both are restricted to proximal cells of the leg. Third, Antp is a repressor of hth. Fourth, ectopic expression of Meis1, a murine hth homologue, can trigger antennal development elsewhere in the fly. Taken together, these data indicate that hth is an antennal selector gene, and that Antp promotes leg development by repressing hth and consequently nuclear Exd.  相似文献   

16.
The molecular mechanisms of head development are a central question in vertebrate and invertebrate developmental biology. The anteriorly expressed homeobox gene otd in Drosophila and its homolog Otx in mouse are required for the early development of the most anterior part of the body, suggesting that a fundamental genetic program of cephalic development might be conserved between vertebrates and invertebrates. We have examined this hypothesis by introducing the human Otx genes into flies. By inducing expression of the human Otx homologs with a heat shock promoter, we found that both Otx1 and Otx2 functionally complement the cephalic defects of a fly otd mutant through specific activation and inactivation of downstream genes. Combined with previous morphological studies, these results are consistent with the view that a common molecular ground plan of cephalization was invented before the diversification of the protostome and the deuterostome in the course of metazoan evolution.  相似文献   

17.
The class 3 Hox gene orthologue in insects, zerknüllt (zen), is not expressed along the anterior-posterior axis, but only in extra-embryonic tissues, suggesting that it has lost its function as a normal Hox gene. To analyse whether this loss of Hox gene function has already occurred in a basal arthropod lineage, we have isolated a Hox3 orthologue from the spider Cupiennius salei. In contrast to the insect zen sequences, which have a highly diverged homeobox, the spider Hox3 gene orthologue, Cs-Hox3, shows a high sequence similarity to the class 3 Hox genes of other phyla, including chordates. In situ hybridization in early embryos shows that it is expressed in a continuous region covering the pedipalp segment and the four leg-bearing segments. This expression pattern suggests a Hox-gene-like function for Cs-Hox3. On the other hand, the expression pattern does not strictly follow the colinearity rule, as it overlaps fully with the expression domain of the class 1 orthologue of the spider, Cs-lab. Still, our data suggest that the ancestor of the arthropods must have had a class 3 Hox gene with a function in anterior-posterior axis specification and that this function has been lost in the lineage leading to the insects.  相似文献   

18.
19.
20.
In C. elegans, six lateral epidermal stem cells, the seam cells V1-V6, are located in a row along the anterior-posterior (A/P) body axis. Anterior seam cells (V1-V4) undergo a fairly simple sequence of stem cell divisions and generate only epidermal cells. Posterior seam cells (V5 and V6) undergo a more complicated sequence of cell divisions that include additional rounds of stem cell proliferation and the production of neural as well as epidermal cells. In the wild type, activity of the gene lin-22 allows V1-V4 to generate their normal epidermal lineages rather than V5-like lineages. lin-22 activity is also required to prevent additional neurons from being produced by one branch of the V5 lineage. We find that the lin-22 gene exhibits homology to the Drosophila gene hairy, and that lin-22 activity represses neural development within the V5 lineage by blocking expression of the posterior-specific Hox gene mab-5 in specific cells. In addition, in order to prevent anterior V cells from generating V5-like lineages, wild-type lin-22 gene activity must inhibit (directly or indirectly) at least five downstream regulatory gene activities. In anterior body regions, lin-22(+) inhibits expression of the Hox gene mab-5. It also inhibits the activity of the achaete-scute homolog lin-32 and an unidentified gene that we postulate regulates stem cell division. Each of these three genes is required for the expression of a different piece of the ectopic V5-like lineages generated in lin-22 mutants. In addition, lin-22 activity prevents two other Hox genes, lin-39 and egl-5, from acquiring new activities within their normal domains of function along the A/P body axis. Some, but not all, of the patterning activities of lin-22 in C. elegans resemble those of hairy in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号