共查询到15条相似文献,搜索用时 0 毫秒
1.
2.
3.
武钢炼铁CO2排放现状及减排方向 总被引:2,自引:0,他引:2
计算分析了武钢高炉炼铁的CO2排放量,结果表明,2007年的CO2排放量比2004年下降了60~70kg/t.但距离理想高炉的排放水平仍然有152.83 kg/t的差距.通过改进过程效率、回收余热余能和使用金属化炉料,能够降低高炉的综合能耗,达到减少高炉CO2实际排放量的目的. 相似文献
4.
济钢一铁通过优化炉料结构,加强筛分,改进高炉操作,上部采用大矿批为主的装料制度,下部实行高风速、全风温、全风口喷吹等操作,同时不断加大喷煤系统和热风系统的设备改造,推动高炉喷煤比稳步提高,1998年喷煤总量达到了18.1万t。 相似文献
5.
高炉使用含碳复合炉料的原理 总被引:2,自引:1,他引:1
高炉炼铁正朝着高产、低污染、低能耗的方向发展,为了实现这一目标,包括高炉使用含碳复合炉料等一些革新的炼铁技术已经被提出或实际应用。铁焦、热压含碳球团是将铁矿粉和煤粉按一定比例混合后制成的新型含碳复合炉料。研究结果指出,含碳复合炉料相比于传统的高炉炉料(烧结矿和球团矿)具有高温强度高、还原性能好以及原料适应性强等优势。阐明了高炉使用含碳复合炉料的基本原理,介绍了铁焦制备的工艺流程及应用情况,重点进行了热压含碳球团制备工艺流程、冷态冶金性能、高温冶金性能、高炉使用热压含碳球团等试验研究,最后利用多流体高炉数学模型对高炉使用热压含碳球团操作进行了模拟研究。研究表明,高炉使用一定量的含碳复合炉料可以降低热空区温度,增加产量,降低焦比,高炉热利用效率明显提高,操作性能得到有效改善。 相似文献
6.
莱芜钢铁总厂第二铁厂2#750m3高炉在生产中采取提高烧结矿碱度、配用高品位进口矿、减少入炉粉末、稳定焦炭质量及稳定炉温、适当提高炉渣碱度、提高风温和顶压等一系列措施,使生铁含硅量由0.841%降为0.637%,生铁一级品率由42.67%提高到54.61%,高炉综合技术经济指标提高。 相似文献
7.
8.
9.
日本钢铁业在减排CO2的炼铁技术开发中,近期主要以开发新型炉料为主,新型炉料包括高反应性焦炭、铁焦复合球团、预还原烧结矿等;长期主要以氢气还原铁矿石的高炉炼铁技术为主,还包括与氢还原相配套的新型焦炭技术等。本文介绍了高反应性焦炭、铁焦复合球团和预还原烧结矿对高炉降低还原剂比的作用及其在高炉中的用法,阐述了氢气还原铁矿石的高炉炼铁技术及与之相配套的新型焦炭技术的研究进展,指出我们应借鉴其高反应性焦炭概念、在矿焦混装时使用高反应性焦炭,以及应着手开发类似HPC的粘结剂技术。 相似文献
10.
铁焦制备与高炉应用的研究进展 总被引:1,自引:1,他引:0
钢铁工业长期面临着资源短缺和环境污染的的发展现状,实现节能减排和绿色冶金是钢铁工业实现可持续发展的重点。而高炉炼铁是钢铁工业节能减排的关键,急需研发低碳高炉炼铁新技术。复合铁焦是实现低碳高炉炼铁的一种新型碳铁复合炉料。高炉使用铁焦后可降低热储备区温度,提高冶炼效率,降低焦比,从而实现CO2减排。综述了国内外铁焦制备与应用的研究进展,主要包括铁焦的制备工艺和高炉应用。归纳了各种铁焦制备工艺的特点。同时提出并研究了矿煤压块-竖炉炭化-高炉应用的冷压型铁焦制备与应用新技术。重点进行了冷压型铁焦的制备及冶金性能优化、高炉应用冷压型铁焦等试验研究。冷压型铁焦制备适宜的工艺条件为,质量分数为30%铁矿粉、45%烟煤1、10%烟煤2、10%烟煤3、5%无烟煤、5%沥青类黏结剂B混合加热至60℃,并进行冷压成型;成型压块再经竖炉1 000℃炭化4h;获得抗压强度3 977N、I型转鼓强度77.7%、反应性69.7%、反应后强(固定气化溶损量20%)42%的优质铁焦。高炉综合炉料中添加质量分数20%~30%冷压型铁焦,综合炉料熔滴性能明显改善。以上研究为铁焦实现工业化生产与低碳高炉炼铁应用提供了参考。 相似文献
11.
针对攀钢资源综合利用中试线工艺情况,计算了转底炉—熔分电炉流程处理钒钛磁铁矿的CO2排放量。此外,从能耗角度计算了攀钢高炉流程冶炼钒钛磁铁矿的CO2排放量。结果表明,直接还原中试线转底炉—熔分电炉流程吨铁的CO2排放量为1 427.3kg,攀钢高炉冶炼钒钛磁铁矿吨铁的CO2排放量为1 508.7kg。 相似文献
12.
13.
CO2减排是我国实现清洁化生产中长期规划中的一项重要内容。通过论述矿渣微粉是实现CO2减排的主要途径,指出八钢建设矿渣微粉项目,不仅能够有效地降低八钢工业固体废弃物的排放和环境污染问题,而且对新疆工业CO2减排具有重要意义。 相似文献
14.
The sustainable development against global warming is a challenge faced by societies at global level. For steel industry, the pressure of reducing CO2 emission is likely to last many years. During the past decades, the CO2 emission per ton steel has been reduced mainly due to the improvement of energy efficiency. Entering the 21st century, the steel manufacturing route must have three functions, namely, production of high performance steel products, conversion of energy, and treatment of waste. In the near future, it is expected that existing BF-BOF and EAF routes will be improved, in order to produce high performance steels, increase the use of scrap, and integrate steel industry with other industries for mitigating CO2 emission. In the long term, using carbon-free energy, reducing agents, and storing CO2 securely or converting CO2 into a harmless substance can be presumed for tremendous reduction in CO2 emission. 相似文献