首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used a dam‐free tributary (the Baía River) in the upper Paraná River floodplain downstream of a major dam in the Paraná River, Brazil to investigate the effects of dam‐regulated reverse flow on limnological variables and fish. We tested the hypotheses that limnological variables in tributaries change based on flow direction and that fish assemblages respond to this variation. Sampling sites were determined considering flow direction (normal or reverse) and position (near or far from the river mouth). Limnological variables showed higher values for transparency, oxygen, pH, and electrical conductivity at sites near the mouth of the Baía River during reverse flow. Species richness and evenness differed significantly in relation to position, with higher values closer to the Paraná River. The average standard length of fish species was higher near the mouth of the Baía River and during the reverse flow period. No significant differences in species abundance were found. Reverse flow into the Baía River brought nutrient‐poor water from the dammed Paraná River, thereby altering the limnological variables. This flow condition impelled the entry of species with higher average standard lengths. However, increased species richness and low evenness were due to the increase in species dispersal rates under all flow conditions. Our results emphasize that the effects of dams can extend several kilometres into the floodplain, provide basic knowledge on the effects of major dams on downstream pristine tributaries, and highlight the need for further studies to understand the wider influences.  相似文献   

2.
Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human‐induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non‐impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human‐induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co‐influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non‐impoundment sections of rivers. After excluding river size and land‐use influences, our results clearly demonstrate that dams have significant impacts on fish biotic‐integrity and habitat‐and‐social‐preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Many of the most important commercial and recreational species of the megadiverse Brazilian freshwater fishes migrate in rivers among essential habitats during all life stages. These movements, however, have been severely blocked by hundreds of hydroelectric dams and reservoirs and they will be even more obstructed due to hundreds of new developments. Fishways have been used in many countries to allow fish to pass around dams. Fishway construction is booming in Brazil, but poor understanding of migrations by Brazilian fishes has led legislators, scientists, and the public to several misconceptions about the rules of fishways in fisheries conservation. First, is a belief that fishways are only needed to facilitate upstream spawning migrations. Also, it has been suggested that upstream passage for Neotropical migrant fishes is not useful if there is no large free‐flowing stretch upstream of a dam that contains spawning habitat and has a large natural floodplain (nursery habitat). In this paper, we discuss that, in addition to providing passage for pre‐spawning migrants, upstream fishways also provide passage for other fish migrations (e.g. foraging), and that all up‐ and downstream migrations during life history need to be addressed at dams to conserve fish resources. We also argue that an upstream fishway is important even if the upstream reach does not have spawning or nursery habitats. In addition, we discuss the need for protection of downstream migrant fish, and the importance of fish behaviourists and engineers working together on fishway design and operation to solve fish passage issues. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This study was undertaken as part of a long‐term investigation of the ability of high‐level fishways to rehabilitate fish communities upstream of high dams. Effects of Tallowa Dam on fish of the Shoalhaven River system were studied by comparing species abundances, population size‐structures and the structure of fish communities above and below the dam. Fish were sampled twice yearly for two years at 12 sites throughout the catchment. Species richness was greater downstream of the dam, with 21 species, compared to 16 species upstream of the dam. Ten diadromous species are believed to be extinct above the dam because of obstructed fish passage. Another four migratory species capable of climbing the wall have reduced abundances upstream. Accumulations of fish, particularly juveniles, directly below the dam were evident for nine species. Fish communities upstream and downstream of the dam differed significantly, identifying the dam as a significant discontinuity in the available fish habitats within the system. Historical evidence suggests that before the dam was built, fish communities from the tidal limit to at least 130 m elevation were largely continuous. This study has demonstrated that Tallowa Dam is a major barrier to fish migration and has had adverse effects on the biodiversity of the system. The creation of Lake Yarrunga by Tallowa Dam has resulted in distinctive fish communities in riverine and lacustrine habitats. Populations of five species that occur both upstream and downstream of the dam have developed differences in their size structures. The fish community downstream of the dam also differs from its historical condition because of the virtual disappearance of Australian grayling (Prototroctes maraena) and the establishment of non‐native species. A high‐level fishway is now being designed for the dam to restore fish passage. Data from this study will serve as a baseline against which to assess the effectiveness of the fishway in rehabilitating fish communities of the river system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Nearly 60,000 large dams (higher than 15 m) occur worldwide in addition to an estimated 16 million smaller impoundments with individual surface areas larger than 100 m2. The resulting habitat fragmentation threatens global riverine biodiversity and sustainable fish populations. Two opposing approaches for selecting fish passage designs to mitigate river fragmentation are possible: develop a limited number of standardized (reference) designs from which a design for a candidate dam is selected (one-size-fits-all approach) versus conduct scientific fish passage studies specific to each dam and targeted fish species (made-to-order approach). The two approaches vary in probability of effectiveness, cost of supporting biological studies, and overall project cost and schedule impact. To address this conundrum, we analyzed 73 USA dams to identify two groups that differed markedly in fish passage planning approaches. Snake River dams are similar in design, flow, geological setting, and target fish species. By contrast, Mississippi River dams are relatively dissimilar in design, flow, and geological setting but generally similar in target fish species. We conclude that the more similar a candidate dam for fish passage is to a reference set of similar dams (i.e., the Snake River dams), then the more likely fish passage technology can be successfully extrapolated to a proposed dam in the same or a nearby watershed. As a general strategy, we recommend that dams in a region be clustered using key hydrologic, structural, operational, and biological variables. These variables can be used to assign a new dam or retrofit an existing dam to a cluster to which they are most similar, thereby optimally extending existing knowledge to new applications. In the process, reliance on the less efficient and more expensive made-to-order approach can be reduced.  相似文献   

6.
The Penobscot River drains the largest watershed in Maine and once provided spawning and rearing habitats to 11 species of diadromous fishes. The construction of dams blocked migrations of these fishes and likely changed the structure and function of fish assemblages throughout the river. The proposed removal of two main‐stem dams, improved upstream fish passage at a third dam, and construction of a fish bypass on a dam obstructing a major tributary is anticipated to increase passage of and improve habitat connectivity for both diadromous and resident fishes. We captured 61 837 fish of 35 species in the Penobscot River and major tributaries, through 114 km of boat electrofishing. Patterns of fish assemblage structure did not change considerably during our sampling; relatively few species contributed to seasonal and annual variability within the main‐stem river, including smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and golden shiner Notemigonus crysoleucas. However, distinct fish assemblages were present among river sections bounded by dams. Many diadromous species were restricted to tidal waters downriver of the Veazie Dam; Fundulus species were also abundant within the tidal river section. Smallmouth bass and pumpkinseed were most prevalent within the Veazie Dam impoundment and the free‐flowing river section immediately upriver, suggesting the importance of both types of habitat that supports multiple life stages of these species. Further upriver, brown bullhead Ameiurus nebulosus, yellow perch Perca flavescens, chain pickerel Esox niger, and cyprinid species were more prevalent than within any other river section. Our findings describe baseline spatial patterns of fish assemblages in the Penobscot River in relation to dams with which to compare assessments after dam removal occurs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The natural flow regime of many rivers in the USA has been impacted by anthropogenic structures. This loss of connectivity plays a role in shaping river ecosystems by altering physical habitat characteristics and shaping fish assemblages. Although the impacts of large dams on river systems are well documented, studies on the effects of low‐head dams using a functional guild approach have been fewer. We assessed river habitat quality and fish community structure at 12 sites on two rivers; the study sites included two sites below each dam, two sites in the pool above each dam and two sites upstream of the pool extent. Fish communities were sampled from 2012 to 2015 using a multi‐gear approach in spring and fall seasons. We aggregated fishes into habitat and reproductive guilds in order to ascertain dams' effects on groups of fishes that respond similarly to environmental variation. We found that habitat quality was significantly poorer in the artificial pools created above the dams than all other sampling sites. Fast riffle specialist taxa were most abundant in high‐quality riffle habitats farthest from the dams, while fast generalists and pelagophils were largely restricted to areas below the downstream‐most impoundment. Overall, these dams play a substantial role in shaping habitat, which impacts fish community composition on a functional level. Utilizing this functional approach enables us to mechanistically link the effects of impoundments to the structure of fish communities and form generalizations that can be applied to other systems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Large rivers throughout the world have been modified by using dike structures to divert water flows to deepwater habitats to maintain navigation channels. These modifications have been implicated in the decline in habitat diversity and native fishes. However, dike structures have been modified in the Missouri River USA to increase habitat diversity to aid in the recovery of native fishes. We compared species occupancy and fish community composition at natural sandbars and at notched and un‐notched rock dikes along the lower Missouri River to determine if notching dikes increases species diversity or occupancy of native fishes. Fish were collected using gill nets, trammel nets, otter trawls, and mini fyke nets throughout the lower 1212 river km of the Missouri River USA from 2003 to 2006. Few differences in species richness and diversity were evident among engineered dike structures and natural sandbars. Notching a dike structure had no effect on proportional abundance of fluvial dependents, fluvial specialists, and macrohabitat generalists. Occupancy at notched dikes increased for two species but did not differ for 17 other species (81%). Our results suggest that dike structures may provide suitable habitats for fluvial species compared with channel sand bars, but dike notching did not increase abundance or occupancy of most Missouri River fishes. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

10.
Water and natural resource managers are concerned with evaluating how fish habitat and populations may respond to water diversions and small‐scale flow augmentations. We used two‐dimensional hydraulic models, habitat suitability curves and an individual‐based population viability model to assess whether flow augmentations of about 0.28–0.57 m3/s would create suitable habitat for federally listed native fish loach minnow Rhinichthys cobitis and spikedace Meda fulgida in a reach of the Gila River, New Mexico, and then examined how fish population viability may change under a variety of colonization and extinction scenarios. These simulations help to inform water management decisions in a reach of the Gila River where river diversions currently exist and new diversions and augmentations are being proposed. Our results suggest that the flow augmentations evaluated will result in small changes (on average across life stages, ?0.22% to 4.06%) in suitable habitat for loach minnow and spikedace depending on augmentation scenario and fish life stage. While these percent changes are small, they would result in a reduction in the dewatering of the river channel in a river reach where native fish abundance is thought to be low. Actual native fish responses to these habitat changes are unknown; however, these flow augmentations could potentially allow these native species to re‐colonize this river segment from upstream or downstream sources increasing species distribution and likely population viability. Maintaining viable populations of native fish in this river reach is dependent on complex factors including persistence of suitable habitat for multiple life stages, connectivity with other populations and minimizing risk of invasion from non‐native species. We recommend that these predictions from the habitat and population models be tested and verified in an adaptive management framework linking modelling, experimental management, monitoring and reassessment to inform water management decisions in the Gila River. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Successful design and operation of fish passage systems are important to protect fish communities from impacts of hydroelectric dams in the Río de la Plata River basin. We evaluated the performance of an elevator lift system to pass adult fish through Yacyretá dam on the Paraná River between 1995 and 1998, both for mechanical reliability and performance. The elevator lift system was mechanically inoperative 30–38% of the time during the October–December period of greatest fish migration. Target species represented 30% of total fish number in gillnet samples in the tailwater, but constituted only 10% of the total number of fish transferred. Fish collected within the system were dominated by Pimelodus clarias (>69%), although this species represented less than 10% of captures in experimental gillnets set in the tailwater. Prochilodus lineatus, a key species, represented less than 5% of transferred fish, but constituted 22.1% of tailwater samples. Estimated number of fish transferred per year ranged between 1 210 000 (1995) and 3 610 000 (1996) with biomass ranging from 631 to 1989 tons, respectively. We estimated a fish passage efficiency of 1.88% for all species and 0.62% for target species. At this efficiency, transferred species would increase the total fish yield in the reservoir by as much as 4.9 kg/ha/year, but only 0.5 kg/ha/year for target species. We conclude that fish transfer efficiency is inadequate to maintain populations of target species in the Paraná River system. We identify critical research needs to improve the passage of fish at dams. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Anthropogenic alterations to large rivers ranging from impoundments to channelization and levees have caused many rivers to no longer access the floodplain in a meaningful capacity. Floodplain habitats are important to many riverine fishes to complete their life‐history strategies. The fish community and species of fish that inhabit floodplain habitats are often dictated by the type of habitat and the conditions within that habitat (e.g., temperature, water velocity, depth, and discharge). As mitigation and restoration projects are undertaken, it is imperative that managers understand how various habitat components will affect the fish community in floodplain habitats. We collected fish and habitat data from two restored side channels with different structural designs on the lower Platte River, Nebraska, to determine how habitat variables predicted species diversity and individual species presence. We found a decrease in discharge in the main‐stem river resulted in increased diversity in one of the side channels, with the greatest diversity values occurring during summer. No habitat variables performed well for predicting fish species diversity for an adjacent side channel with more uniform depth and velocity and no groundwater inputs. However, several native riverine fish species in this side channel were shown to be associated with high temperature, dissolved oxygen, main‐stem discharge, and discharge variability. These results highlight the importance of considering the physical design of restored floodplain habitats when attempting to enhance fish communities.  相似文献   

13.
Barriers to fish movement have been used to prevent the spread of invasive fishes but may also limit the movements of native fishes. We evaluated the potential consequences of a proposed barrier on the Illinois River Waterway, meant to inhibit the spread of silver and bighead carps, to the continued recovery of native fishes in the Des Plaines River following water quality improvements. We compared changes in upstream cumulative species richness and community structure from 1983 to 2013 in the DuPage River, an adjacent tributary with an impassable dam, to the area upstream of a newly proposed barrier on the Des Plaines River where fish can currently pass through a navigational lock. Fewer species displayed truncated distributions upstream of the passable lock and dam (n = 18) compared with the impassable dam (n = 23). Due to water quality improvements in the Illinois River as a whole, cumulative species richness downstream of both dams steadily increased over time. Richness also increased upstream of the passable dam but plateaued upstream of the impassable dam. Fifteen to 18 species accounted for differences in community structure between areas downstream and upstream of either dam. Most species (78–100%) were found in greater relative abundance downstream of the impassable dam, and only 53% were found in greater relative abundance downstream of the passable dam. The truncation in species richness and abundance at the impassable dam foreshadows the potential consequences of an indiscriminate barrier on native fishes and the continued recovery of native assemblages.  相似文献   

14.
Regulation of rivers by dams transforms previously lotic reaches above the dam into lentic ones and limits or prevents longitudinal connectivity, which impairs access to suitable habitats for the reproduction of many migratory fish species. Frequently, unregulated tributaries can provide important habitat heterogeneity to a regulated river and may mitigate the influence of impoundments on the mainstem river. We evaluated the importance of tributaries to spawning of migratory fish species over three spawning seasons, by comparing several abiotic conditions and larval fish distributions in four rivers that are tributaries to an impounded reach of the Upper Paraná River, Brazil. Our study confirmed reproduction of at least 8 long‐distance migrators, likely nine, out of a total of 19 occurring in the Upper Paraná River. Total larval densities and percentage species composition differed among tributaries, but the differences were not consistent among spawning seasons and unexpectedly were not strongly related to annual differences in temperature and hydrology. We hypothesize that under present conditions, densities of larvae of migratory species may be better related to efficiency of fish passage facilities than to temperature and hydrology. Our study indicates that adult fish are finding suitable habitat for spawning in tributaries, fish eggs are developing into larvae, and larvae are finding suitable rearing space in lagoons adjacent to the tributaries. Our findings also suggest the need for establishment of protected areas in unregulated and lightly regulated tributaries to preserve essential spawning and nursery habitats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
16.
The building of adduction channels (penstocks) that conduct water from reservoirs to turbines, which are located kilometres from the dam, is becoming common, optimizing the electricity generation in small dams. This design creates a river stretch with reduced discharge between the dam and the powerhouse. This study evaluates the short‐term impacts of the below‐dam decrease in river flow on fish assemblages. Samples were collected in the reduced flow stretch of the Castro Alves Hydropower Plant (Antas River, Rio Grande do Sul, Brazil) before the reservoir started operating (January 2008; mean discharge of 103.7 m3/s) and immediately after operation began (March 2008; mean discharge of 12.4 m3/s). Sampling was conducted in distinct habitats of the reduced flow stretch (slow waters—gillnets, sand beaches—seining nets, structured littoral—electrofishing, and fast waters—cast nets) with a strongly standardized effort. The attributes of the fish assemblages were not negatively affected by the flow reduction in any habitat sampled. However, distinct changes in the spatial structure were observed considering the different types of habitat predominantly used by the species, which represents an entire reorganization of the fish assemblages in the short term. It is fundamental that these short‐term aspects be considered in the licensing of hydropower plants in addition to the long‐term changes.  相似文献   

17.
Small dams for hydropower have caused widespread alteration of Central American rivers, yet much of recent development has gone undocumented by scientists and conservationists. We examined the ecological effects of a small hydropower plant (Doña Julia Hydroelectric Center) on two low‐order streams (the Puerto Viejo River and Quebradon stream) draining a mountainous area of Costa Rica. Operation of the Doña Julia plant has dewatered these streams, reducing discharge to ~10% of average annual flow. This study compared fish assemblage composition and aquatic habitat upstream and downstream of diversion dams on two streams and along a ~4 km dewatered reach of the Puerto Viejo River in an attempt to evaluate current instream flow recommendations for regulated Costa Rican streams. Our results indicated that fish assemblages directly upstream and downstream of the dam on the third order Puerto Viejo River were dissimilar, suggesting that the small dam (< 15 m high) hindered movement of fishes. Along the ~4 km dewatered reach of the Puerto Viejo River, species count increased with downstream distance from the dam. However, estimated species richness and overall fish abundance were not significantly correlated with downstream distance from the dam. Our results suggested that effects of stream dewatering may be most pronounced for a subset of species with more complex reproductive requirements, classified as equilibrium‐type species based on their life‐history. In the absence of changes to current operations, we expect that fish assemblages in the Puerto Viejo River will be increasingly dominated by opportunistic‐type, colonizing fish species. Operations of many other small hydropower plants in Costa Rica and other parts of Central America mirror those of Doña Julia; the methods and results of this study may be applicable to some of those projects. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Large river paradigms suggest that natural flow regimes are critical for maintaining instream habitats and promoting production and growth of native aquatic organisms. Modifications to the Missouri River, Nebraska, within the past 100 years have drastically reduced shallow water habitat, homogenized the flow regime, and contributed to declines in several native species. Despite drastic flow modifications, several metrics of the Missouri River's flow regime still vary across years. We related age‐0 channel catfish growth to environmental conditions in the channelized Missouri River, Nebraska, between 1996 and 2013 using an information theoretic approach. Growth rate was most influenced by growing season duration and duration of discharges below the 25th percentile of 30‐year daily Missouri River discharges. Periods of low water may be important for juvenile growth because of channel modifications that limit critical shallow water habitat during higher within‐bank flows. Exclusion of peak discharge and peak discharge timing in the best model to predict growth is counter to conventional thoughts on river fish responses to hydrological conditions but may be reflective of the general lack of high‐magnitude flooding during the majority of our study. Future efforts to relate juvenile fish growth to environmental conditions can provide guidance for water management in the Missouri River and other regulated North American rivers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi‐species hierarchical models to estimate habitat‐specific abundances and densities of juvenile humpback chub, bluehead sucker Catostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Dams alter many aspects of riverine environments and can have broad effects on aquatic organisms and habitats both upstream and downstream. While dams and associated reservoirs can provide many services to people (hydropower, recreation, flood control, and navigation), they can also negatively affect riverine ecosystems. In particular, hydropeaking dams affect downstream fish habitats by increasing variability in discharge and temperature. To assess the effects of Harris Dam on the Tallapoosa River, AL, operating under an adaptive management plan implemented in 2005, we sampled fish for community analyses from four sites on the river: three in the regulated reach downstream of the dam, and one unregulated site upstream. Fish were collected every other month using boat/barge electrofishing. We used Shannon's H, nonmetric multidimensional scaling (NMDS), a multiresponse permutation procedure (MRPP), and indicator species analysis to quantify patterns in fish assemblage structure and determine how assemblages varied among sites. NMDS and MRPP indicated significant fish assemblage differences among sites, with the tailrace fish assemblage being distinct from the other downstream sites and sites becoming more similar to the upstream, unregulated site (relative to fish assemblages) with distance downstream of the tailrace. The tailrace fish assemblage included higher proportions of rheophilic species that may be better suited to variable and/or high flows. Altered fish assemblages demonstrated continued effects of Harris Dam on the downstream aquatic systems, particularly close to the dam. These effects may indicate that further mitigation should be considered depending on conservation and management goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号