首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
It has been under debate if a self‐assembled monolayer (SAM) with two immiscible ligands of different chain lengths and/or bulkiness can form a stripe‐like pattern on a nanoparticle (NP) surface. The entropic gain upon such pattern formation due to difference in chain lengths and/or bulkiness has been proposed as the driving force in literature. Using atomistic discrete molecular dynamics simulations it is shown that stripe‐like pattern could indeed emerge, but only for a subset of binary SAM systems. In addition to entropic contributions, the formation of a striped pattern also strongly depends upon interligand interactions governed by the physicochemical properties of the ligand constituents. Due to the interplay between entropy and enthalpy, a binary SAM system can be categorized into three different types depending on whether and under what condition a striped pattern can emerge. The results help clarify the ongoing debate and our proposed principle can aid in the engineering of novel binary SAMs on a NP surface.  相似文献   

9.
10.
11.
12.
13.
14.
Langmuir films (LFs) of biphenyl and anthracene derivatives on the surface of liquid mercury were studied by surface-specific X-ray and surface tension measurements. Phases of lying-down, side-lying and standing-up molecules were found, some of which exhibit long-range lateral order. The molecular symmetry and the position and nature of the side-, end-, and headgroups are shown to dominate the structural evolution of the LFs with surface coverage.  相似文献   

15.
16.
Mechanically interlocked molecules have marked a breakthrough in the field of topological chemistry and boosted the vigorous development of molecular machinery. As an archetypal example of the interlocked molecules, catenanes comprise macrocycles that are threaded through one another like links in a chain. Inspired by the transition metal–templated approach of catenanes synthesis, the hierarchical assembly of DNA origami catenanes templated by gold nanoparticles is demonstrated in this work. DNA origami catenanes, which contain two, three or four interlocked rings are successfully created. In particular, the origami rings within the individual catenanes can be set free with respect to one another by releasing the interconnecting gold nanoparticles. This work will set the basis for rich progress toward DNA‐based molecular architectures with unique structural programmability and well‐defined topology.  相似文献   

17.
18.
19.
20.
Nanoparticles tend to aggregate once integrated into soft matter and consequently, self‐assembling nanoparticles into large‐scale, regular, well‐defined, and ultimately chiral patterns remains an ongoing challenge toward the design and realization of organized superstructures of nanoparticles. The patterns of nanoparticles that are reported in liquid crystals so far are all static, and this lack of responsiveness extends to assemblies of nanoparticles formed in topological singularities and other localized structures of anisotropic matter. Here, it is shown that gold nanoparticles form spiral superstructures in polygonal fields of cholesteric liquid crystals. Moreover, when the cholesteric liquid crystals incorporate molecular photoswitches in their composition, the pitch of the nanoparticulate spirals follows the light‐induced reorganization of the cholesteric liquid crystals. These experimental findings indicate that chiral liquid crystals can be used as chiral and dynamic templates for soft photonic nanomaterials. Controlling the geometry of these spirals of nanoparticles will ultimately allow modulating the plasmonic signature of hybrid and chiral systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号