首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the robust H control problem for stochastic systems with a delay in the state. Sufficient delay‐dependent conditions for the existence of state‐feedback controllers are proposed to guarantee mean‐square asymptotic stability as well as the prescribed H performance for the closed‐loop systems. Moreover, the results are further extended to the stochastic time‐delay systems with parameter uncertainties, which are assumed to be time‐varying norm‐bounded appearing in both the state and the input matrices. The appealing idea is to partition the delay, which differs greatly from the most existing results and reduces conservatism by thinning the delay partitioning. Numerical examples are provided to show the advantages of the proposed techniques. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The robust stochastic stability, stabilization and H control for mode‐dependent time‐delay discrete Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a standard linear system, and delay‐dependent linear matrix inequalities (LMIs) conditions for the mode‐dependent time‐delay discrete Markovian jump singular systems to be regular, causal and stochastically stable, and stochastically stable with γ‐disturbance attenuation are obtained, respectively. With these conditions, robust stabilization problem and robust H control problem are solved, and the LMIs sufficient conditions are obtained. A numerical example illustrates the effectiveness of the method given in the paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is concerned with the delay‐dependent H filtering problem for singular systems with time‐varying delay in a range. In terms of linear matrix inequality approach, the delay‐range‐dependent bounded real lemmas are proposed, which guarantee the considered system to be regular, impulse free and exponentially stable while satisfying a prescribed H performance level. The sufficient conditions are proposed for the existence of linear H filter. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the problem of simultaneous robust normalization and delay‐dependent H control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H controller alone or a state‐derivative feedback H controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper considers the problem of delay‐dependent adaptive reliable H controller design against actuator faults for linear time‐varying delay systems. Based on the online estimation of eventual faults, the parameters of adaptive reliable H controller are updating automatically to compensate the fault effects on the system. A new delay‐dependent reliable H controller is established using a linear matrix inequality technique and an adaptive method, which guarantees the stability and adaptive H performance of closed‐loop systems in normal and faulty cases. A numerical example and its simulation results illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses the problem of robust H control for uncertain continuous singular systems with state delay. The singular system under consideration involves state time delay and time‐invariant norm‐bounded uncertainty. Based on the linear matrix inequality (LMI) approach, we design a memoryless state feedback controller law, which guarantees that, for all admissible uncertainties, the resulting closed‐loop system is not only regular, impulse free and stable, but also meets an H‐norm bound constraint on disturbance attenuation. A numerical example is provided to demonstrate the applicability of the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The problem of H filtering is considered for singular Markovian jump systems with time delay. In terms of linear matrix inequality (LMI) approach, a delay‐dependent bounded real lemma (BRL) is proposed for the considered system to be stochastically admissible while achieving the prescribed H performance condition. Based on the BRL and under partial knowledge of the jump rates of the Markov process, both delay‐dependent and delay‐independent sufficient conditions that guarantee the existence of the desired filter are presented. The explicit expression of the desired filter gains is also characterized by solving a set of strict LMIs. Some numerical examples are given to demonstrate the effectiveness of the proposed methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This paper considers mean‐square exponential stability and H control problems for Markovian jump systems (MJSs) with time delays which are time‐varying in an interval and depend on system mode. By exploiting a novel Lyapunov‐Krasovskii functional which takes into account the range of delay, and by making use of some techniques, new delay‐range‐dependent stability result and bounded real lemma for MJSs are obtained, where the introduction of the lower bound of delay is shown to be advantageous for reducing conservatism. Moreover, a sufficient condition for the solvability of the H control problem is derived in terms of linear matrix inequalities. Finally, illustrative examples are presented to show the advantage and effectiveness of the proposed approaches. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

9.
In this paper, the mean‐square exponential stability and H control problems are investigated for a general class of stochastic time‐delay systems with Markovian jumping parameters. First, a delay‐dependent result in terms of linear matrix inequalities (LMIs) for mean‐square exponential stability and H performance analysis is presented by constructing a modified Lyapunov‐Krasovskii functional. The decay rate can be chosen in a range to be a finite positive constant without equation constraint. Then, based on the proposed stability result, we derive sufficient condition to solve the H controller design problem. Finally, numerical examples are provided to illustrate the effectiveness of the theoretical results. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

10.
This paper investigates the robust H control problem for continuous‐time piecewise time‐delay systems by using piecewise continuous Lyapunov function. The uncertainties of the systems under consideration are expressed in a linear fractional form. A strict linear matrix inequality approach is developed to obtain delay‐dependent asymptotic stability conditions and H performance. The H controller design problem is solved by exploiting the cone complementarity linearization (CCL) method. Finally an example is given to illustrate the application of the proposed approach. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

11.
This paper deals with the problems of stochastic stability and H analysis for Markovian jump linear systems with time‐varying delays. In terms of linear matrix inequalities, a less conservative delay‐dependent stability criterion for Markovian jump systems is proposed by constructing a different Lyapunov‐Krasovskii functional and introducing improved integral‐equalities approach, and a sufficient condition is derived from the H performance. Numerical examples are provided to demonstrate the efficiency and reduced conservatism of the results in this paper. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

12.
This paper presents a solution to the singular H control problem via state feedback for a class of nonlinear systems. It is shown that the problem of almost disturbance decoupling with stability plays a fundamental role in the solution of the considered problem. We also point out when the singular problem can be reduced to a regular one or solved via standard H technique. We must stress that the solution of the singular problem is obtained without making any approximation of it by means of regular problems. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the problem of delay‐dependent exponential H filtering for discrete‐time switched delay systems is investigated under average dwell time switching signals. Time delay under consideration is interval time‐varying in the states. By introducing a proper factor to construct a novel Lyapunov‐Krasovskii function and using average dwell time approach, sufficient conditions for the solvability of this problem, dependent on the upper and lower bounds of time‐varying delay, are obtained in terms of linear matrix inequalities. A numerical example is presented to demonstrate the effectiveness of the developed results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
15.
This paper deals with the problem of network‐based H control for a class of uncertain stochastic systems with both network‐induced delays and packet dropouts. The networked control system under consideration is represented by a stochastic model, which consists of two successive delay components in the state. The uncertainties are assumed to be time varying and norm bounded. Sufficient conditions for the existence of H controller are proposed to ensure exponentially stable in mean square of the closed‐loop system that also satisfies a prescribed performance. The conditions are expressed in the frame of linear matrix inequalities (LMIs), which can be verified easily by means of standard software. Two practical examples are provided to show the effectiveness of the proposed techniques. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This paper deals with the problem of H estimation for linear systems with a certain type of time-varying norm-bounded parameter uncertainty in both the state and output matrices. We address the problem of designing an asymptotically stable estimator that guarantees a prescribed level of H noise attenuation for all admissible parameter uncertainties. Both an interpolation theory approach and a Riccati equation approach are proposed to solve the estimation problem, with each method having its own advantages. The first approach seems more numerically attractive whilst the second one provides a simple structure for the estimator with its solution given in terms of two algebraic Riccati equations and a parameterization of a class of suitable H estimators. The Riccati equation approach also pinpoints the ‘worst-case’ uncertainty.  相似文献   

17.
Time delay is frequently encountered in practical quantum feedback control systems with long transmission lines and measurement process. This paper is concerned with measurement‐based feedback H control for quantum systems with time delays appearing in the feedback loops. A physical model is presented for the quantum time‐delay system described by complex quantum stochastic differential equations. Quantum versions of some fundamental properties, such as dissipativity and stability, are discussed for this model. A numerical procedure is proposed for H controller synthesis, which can deal with a non‐convex optimization problem arising in the design processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is concerned with the H filtering design for discrete‐time stochastic time‐delay systems with state dependent noise. A sufficient condition for the existence of H filter design is presented via linear matrix inequalities. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

19.
This paper investigates the problem of network‐based control for stochastic plants. A new model of stochastic time‐delay systems is presented where both network‐induced delays and packet dropouts are taken into consideration for a sampled‐data network‐based control system. This model consists of two successive delay components in the state, and we solve the network‐based H control problem based on this model by a new stochastic delay system approach. The controller design for the sampled‐data systems is carried out in terms of linear matrix inequalities. Finally, we illustrate the methodology by applying these results to an air vehicle control problem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the H observer design problem for a class of nonlinear discrete‐time singular systems with time‐varying delays and disturbance inputs. The nonlinear systems can be rectangular and the nonlinearities satisfy the one‐sided Lipschitz condition and quadratically inner‐bounded condition, which are more general than the traditional Lipschitz condition. By appropriately dealing with these two conditions and applying several important inequalities, a linear matrix inequality–based approach for the nonlinear observer design is proposed. The resulting nonlinear H observer guarantees asymptotic stability of the estimation error dynamics with a prescribed performance γ. The synthesis condition of H observer design for nonlinear discrete‐time singular systems without time delays is also presented. The design is first addressed for one‐sided Lipschitz discrete‐time singular systems. Finally, two numerical examples are given to show the effectiveness of the present approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号