首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To develop conjugated polymers with low bandgap, deep HOMO level, and good solubility, a new conjugated alternating copolymer PC‐DODTBT based on N‐9′‐heptadecanyl‐2,7‐carbazole and 5, 6‐bis(octyloxy)‐4,7‐di(thiophen‐2‐yl)benzothiadiazole was synthesized by Suzuki cross‐coupling polymerization reaction. The polymer reveals excellent solubility and thermal stability with the decomposition temperature (5% weight loss) of 327°C. The HOMO level of PC‐DODTBT is ‐5.11 eV, indicating that the polymer has relatively deep HOMO level. The hole mobility of PC‐DODTBT as deduced from SCLC method was found to be 2.03 × 10?4 cm2/Versus Polymer solar cells (PSCs) based on the blends of PC‐DODTBT and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) with a weight ratio of 1:2.5 were fabricated. Under AM 1.5 (AM, air mass), 100 mW/cm?2 illumination, the devices were found to exhibit an open‐circuit voltage (Voc) of 0.73 V, short‐circuit current density (Jsc) of 5.63 mA/cm?2, and a power conversion efficiency (PCE) of 1.44%. This photovoltaic performance indicates that the copolymer is promising for polymer solar cells applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Reactions of N‐(2,4‐dinitrophenyl)‐4‐arylpyridinium chlorides (aryl (Ar) = phenyl and 4‐biphenyl) with piperazine or homopiperazine caused opening of the pyridinium ring and yielded polymers that consisted of 5‐piperazinium‐3‐arylpenta‐2,4‐dienylideneammonium chloride (? N(CH2CH2)2N+ (Cl?)?CH? CH?C(Ar)? CH?CH? ) or 5‐homopiperazinium‐3‐arylpenta‐2,4‐dienylideneammonium chloride (? N(CH2CH2CH2)(CH2CH2)N+ (Cl?)?CH? CH?C(Ar)? CH?CH? ) units. 1H NMR spectral analysis suggested that the π‐electrons of the penta‐2,4‐dienylideneammonium group of the polymers were delocalized. UV‐visible spectral measurements revealed that the π‐conjugation system expanded along the polymer chains because of the orbital interaction between electrons of the two nitrogen atoms of the piperazinium and homopiperazinium rings. However, the π‐conjugation length depended on the distance between the two nitrogen atoms; that is, the polymers containing the piperazinium ring had a longer π‐conjugation length than those containing the homopiperazinium ring. Conversion of the piperazinium and homopiperazinium rings from the boat to the chair form led to a decrease in the π‐conjugation length. The surface of pellets that were molded from the polymers exhibited metallic luster, and these polymers underwent electrochemical oxidation in solution. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
Three series of liquid‐crystalline‐cum‐photocrosslinkable polymers were synthesized from 4‐x‐phenyl‐4′‐(m‐methacryloyloxyalkyloxy)cinnamates (x = ? H, ? OCH3 and ? CN; m = 6, 8 and 10) by free radical solution polymerization using azobisisobutyronitrile as an initiator in tetrahydrofuran at 60 °C. All the monomers and polymers were characterized using intrinsic viscosity, and FTIR, 1H NMR and 13C NMR spectroscopy. The liquid crystalline behavior of these polymers was examined using a hot stage optical polarizing microscope. All the polymers exhibited liquid crystalline behavior. The hexamethylene spacer‐containing polymers exhibited grainy textures; in contrast, the octamethylene and decamethylene spacer‐containing polymers showed nematic textures. Differential scanning calorimetry data confirmed the liquid crystalline property of the polymers. Thermogravimetric analysis revealed that all the polymers were stable between 236 and 344 °C in nitrogen atmosphere and underwent degradation thereafter. As the methylene chain length increases in the polymer side‐chain, the thermal stability and char yield of the polymers decrease. The photocrosslinking property of the polymers was investigated using the technique of exposing the polymer solution to UV light and using UV spectroscopy. The crosslinking reaction proceeds via 2π–2π cycloaddition reactions of the ? CH?CH? of the pendant cinnamate ester. The polymers containing electron‐releasing substituents (? OCH3) showed faster crosslinking than the unsubstituted polymers and those containing electron‐withdrawing substituents (? CN). Copyright © 2007 Society of Chemical Industry  相似文献   

4.
This study investigated durability performance of wood‐plastic composites (WPCs) that were exposed to accelerated cycling of water immersion followed by freeze thaw (FT). The WPCs used in this study were made of high‐density polyethylene (HDPE) or polypropylene (PP) with radiata pine (Pinus radiata) wood flour using hot‐press molding. These two types of plastics included both recycled and virgin forms in the formulation. In the experiments, surface color, flexural properties, and dimensional stability properties (water absorption and thickness swelling) were measured for the FT cycled composites and the control samples. Interface microstructures and thermal properties of the composites were also investigated. The results show that the water absorption and the thickness swelling of the composites increased with the FT weathering. In the meantime, the flexural strength and stiffness decreased. Scanning electron microscopy (SEM) images of the fractured surfaces confirmed a loss of interface bonding between the wood flour and the polymer matrix. Differential scanning calorimetry (DSC) showed a decrease in crystallization enthalpy and crystallinity of the wood flour‐plastic composites as compared with the neat PP and HDPE samples. The crystallinity of the FT cycled composites using the virgin plastics (vPP and vHDPE) increased; however, the composites with the recycled plastics decreased in comparison with corresponding control samples. In general, the properties of the composites were degraded significantly after the accelerated FT cycling. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
A novel gel polymer electrolyte (GPE) which is based on new synthesized boron‐containing monomer, benzyl methacrylate, 1 m LiClO4/N,N‐dimethylformamidel liquid electrolyte solution is prepared through a one‐step synthesis method. The boron‐containing GPE (B‐GPE) not only displays excellent mechanical behavior, favorable thermal stability, but also exhibits an outstanding ionic conductivity of 2.33 mS cm?1 at room temperature owing to the presence of anion‐trapping boron sites. The lithium ion transference in this gel polymer film at ambient temperature is 0.60. Furthermore, the symmetrical supercapacitor which is fabricated with B‐GPE as electrolyte and reduced graphene oxide as electrode demonstrates a broad potential window of 2.3 V. The specific capacitance of symmetrical B‐GPE supercapacitors retains 90% after 3000 charge–discharge cycles at current density of 1 A g?1.  相似文献   

6.
3,4‐Di‐(2′‐hydroxyethoxy)‐4′‐nitrostilbene was prepared and condensed with terephthaloyl chloride, adipoyl chloride, and sebacoyl chloride to yield novel Y‐type polyesters containing NLO‐chromophore dioxynitrostilbenyl groups, which constituted parts of the polymer backbone. Polymers were found soluble in common organic solvents such as acetone and N,N‐dimethylformamide. They showed thermal stability up to 300 °C in thermogravimetric analysis with glass‐transition temperatures obtained from differential scanning calorimetry in the range 110–152 °C. The second harmonic generation (SHG) coefficients (d33) of poled polymer films at a 1064 cm?1 fundamental wavelength were around 3.51 × 10?8 esu. The dipole alignment exhibited high thermal stability even at 10 °C higher than the glass‐transition temperature, and there was no SHG decay below 120 °C for one of these polymers due to the partial main‐chain character of polymer structure, which was acceptable for NLO device applications. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
N‐vinylcarbazole (NVC) was polymerized by 13X zeolite alone in melt (65°C) or in toluene (110°C) and a poly(N‐vinylcarbazole) (PNVC)‐13X composite was isolated. Composites of polypyrrole (PPY) and polyaniline(PANI) with 13X zeolite were prepared via polymerization of the respective monomers in the presence of dispersion of 13X zeolite in water (CuCl2 oxidant) and in CHCl3 (FeCl3 oxidant) at an ambient temperature. The composites were characterized by Fourier transform infrared analyses. Scanning electron microscopic analyses of various composites indicated the formation of lumpy aggregates of irregular sizes distinct from the morphology of unmodified 13X zeolite. X‐ray diffraction analysis revealed some typical differences between the various composites, depending upon the nature of the polymer incorporated. Thermogravimetric analyses revealed the stability order as: 13X‐zeolite > polymer‐13X‐zeolite > polymer. PNVC‐13X composite was essentially a nonconductor, while PPY‐13X and PANI‐13X composites showed direct current conductivity in the order of 10?4 S/cm in either system. However, the conductivity of PNVC‐ 13X composite could be improved to 10?5 and 10?6 S/cm by loading PPY and PANI, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 913–921, 2006  相似文献   

8.
Free‐standing films of polyaniline (PANI), in an emeraldine base state, prepared by evaporation of polymer solutions in N‐methylpyrrolidone (NMP) retain solvent even under dynamic vacuum drying as indicated by transmission Fourier transform infrared (FTIR) spectroscopy, where a band at 1670 cm?1 is clearly observed. Upon protonation–deprotonation cycles in aqueous media the weight of the dry base film decreases indicating gradual loss of NMP. Transmission FTIR spectra shows also the washing out of NMP with a clear decrease in intensity of the hydrogen‐bonded >C?O stretching band (1670 cm?1) of NMP. During this process the bands between 3500 and 3200 cm?1, assigned to >N? H stretching in the PANI backbone, change intensity suggesting that intermolecular hydrogen‐bonded >N? H, with carbonyl oxygen of NMP, is replaced by free >N? H. This is clear evidence of specific interaction of NMP with the emeraldine base. A similar loss of NMP is observed during heating but evidence of polymer degradation is also present. A mechanism is proposed to account for the loss of hydrogen‐bonding ability upon protonation which requires delocalization of the radical cations in the protonated films. © 2001 Society of Chemical Industry  相似文献   

9.
Alkaline anion exchange membrane with semi‐interpenetrating polymer network (s‐IPN) was constituted based upon quaternized poly(butyl acrylate‐co‐vinylbenzyl chloride) (QPBV) and poly(vinylidene fluoride‐co‐hexafluoropropylene) [P(VDF‐HFP)]. The QPBV was synthesized via the free radical copolymerization, followed by quaternization with N‐methylimidazole. The s‐IPN system was constituted by melting blend of QPBV and P(VDF‐HFP), and then crosslinking of P(VDF‐HFP). Ion exchange capacity, water uptake, mechanical performance, and thermal stability of these membranes were characterized. TEM showed that alkaline anion exchange membrane exhibited s‐IPN morphology with microphase separation. The fabricated s‐IPN membrane exhibited hydroxide ion conductivity up to 15 mS cm?1 at 25 °C and a maximum DMFC power density of 46.55 mW cm?2 at a load current density of 98 mA cm?2 at 30 °C. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45775.  相似文献   

10.
Polyaniline or polypyrrole composites with fir or oak wood have been prepared by in situ polymerization of the corresponding monomers in an aqueous suspension of wood sawdust. The percolation threshold of compressed coated particles is located below 5 wt % of the conducting component and, above this limit, the conductivity of most composites was higher than 10?3 S cm?1. The conductivity of composites containing ca 30 wt % of conducting polymer was of the order of 10?1 S cm?1, an order of magnitude lower than that of the corresponding homopolymers, polyaniline and polypyrrole. The conductivity stability has been tested at 175°C. The polypyrrole‐based composites generally lasted for a longer time than pyrrole homopolymers, also on account of the improved mechanical integrity of the samples provided by the presence of wood. The reverse order was found with polyaniline composites. The dielectric properties of the composites were determined in the range of 100 MHz–3 GHz, indicating that thick layers of composite material, ~ 100 mm, are needed for the screening of the electromagnetic radiation below ?10 dB level in this frequency range. Nevertheless, considering the potential production cost of composites and their low weight, such composite materials could be of practical interest in the shielding of electromagnetic interference. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 807–814, 2005  相似文献   

11.
Six commercial polypropylene (PP) homopolymer grades, ranging from 2 to 125 g/10 min in MFR (230°C/2.16 kg), and from 530 to 180 kDa in terms of molar mass (mass average; Mw), have been tested as matrix polymers in wood polymer composites (WPCs) with a wood content of 40%. To check for possible molecular weight controlled interactions between matrix and additives, five different maleic anhydride grafted PP (MA‐PPs) coupling agents (CAs) have been included in the screening as well. Flexural properties, impact strength, and water absorption of the resulting composites served as responses. In addition, crystallinities, surface contact angles (on solid specimens), and rheological properties of the melt were measured for several compounds. The most important outcome of the study is that matrix polymer properties, as influenced by molar mass, are largely reflected in the resulting WPCs. Surprisingly, water absorption of the composites increases with matrix MFR, a phenomenon as yet not published for PP‐based compounds. Furthermore, dynamic rheometry results indicate that the interaction of wood particles with PP melts is dependent on polymer and coupling agent Mw. © 2013 Society of Plastics Engineers  相似文献   

12.
Poly(vinyl chloride) (PVC)—poly(butyl methacrylate) (PBMA) blended polymer electrolytes with lithium perchlorate (LiClO4) as the complexing salts are prepared by solution casting technique. The addition of PBMA into PVC matrix is found to induce considerable changes in physical and electrical properties of the polymer electrolytes. Addition of PBMA into PVC matrix is found to increase the conductivity by two orders of magnitude (1.108 × 10?5 S cm?1) when compared with that of the pristine PVC polymer electrolyte (10?7 S cm?1). Structural, thermal, mechanical, morphological, and polymer–salt interactions are ascertained from X‐ray diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), mechanical analysis, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) respectively. A thermal stability upto 250 °C is asserted from the TG/DTA analysis. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44939.  相似文献   

13.
The preparation of poly(1,2‐dichloroethylene), an unknown material that has been expected to be a superb engineering thermoplastic, was explored. The ring‐opening metathesis polymerization of cis‐3,4‐dichlorocyclobutene quantitatively yielded a white linear polymer with ? CHClCHClCH?CH? repeating units. However, its subsequent addition chlorination could not be made to occur to a detectable level. Steric hindrance and/or electronic deactivation due to the inductive effect of Cl apparently made the chlorination impossible. Furthermore, thermal degradation studies of a series of model compounds indicated that polymers containing (CHCl)n (n ≥ 3) structures would have low thermal stabilities. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
Two poly(thiazole vinylene) derivatives, poly(4‐hexylthiazole vinylene) (P4HTzV) and poly(4‐nonylthiazole vinylene) (P4NTzV), were synthesized by Pd‐catalyzed Stille coupling method. The polymers are soluble in common organic solvents such as o‐dichlorobenzene and chloroform, and possess good thermal stability. P4HTzV and P4NTzV films exhibit broad absorption bands at 400–720 nm with an optical bandgap of 1.77 eV and 1.74 eV, respectively. The HOMO (the highest occupied molecular orbital) energy levels of P4HTzV and P4NTzV are ?5.11 and ?5.12 eV, respectively, measured by cyclic voltammetry. Preliminary results of the polymer solar cells based on P4HTzV : PC61BM ([6,6]‐phenyl‐C‐61‐butyric acid methyl ester) (1 : 1, w/w) show a power conversion efficiency of 0.21% with an open‐circuit voltage of 0.55 V and a short circuit current density of 1.11 mA cm?2, under the illumination of AM1.5G, 100 mW cm?2. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
In this research, polypropylene/wood‐flour composites (WPCs) were blended with different contents of wood and/or maleated polypropylene (MAPP) and clay. We found that the addition of MAPP or clay in the formulation greatly improved the dispersion of the wood fibers in the composite; this suggested that MAPP or clay may have played the role of an adhesion promoter in the WPCs. The results obtained with clay indicate that it also acted as a flame retardant. The thermal tests carried out with the produced samples showed an increased crystallization temperature (Tc), crystallinity, and melting temperature (Tm) with wood loading. The increase of the two former parameters was explained by the incorporation of wood flour, which played the role of nucleating agent and induced the crystallization of the matrix polymer. On the other hand, the Tm increase was ascribed to the insulating properties of wood, which hindered the movement of heat conduction. The effects of UV irradiation on Tm and Tc were also examined. Tc increased with UV exposure time; this implied that UV degradation generated short chains with low molecular weight that could move easily in the bulk of the sample and, thus, catalyze early crystallization. The flexural strength and modulus increased with increasing wood‐flour content. In contrast, the impact strength and tensile strength and strain decreased with increasing wood‐flour content. All of these changes were related to the level of dispersion of the wood flour in the polymeric matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Poly[aniline‐coN‐(2‐hydroxyethyl) aniline] was synthesized in an aqueous hydrochloric acid medium with a determined feed ratio by chemical oxidative polymerization. This polymer was used as a functional conducting polymer intermediate because of its side‐group reactivity. To synthesize the alkyl‐substituted copolymer, the initial copolymer was reacted with NaH to obtain the N‐ and O‐anionic copolymer after the reaction with octadecyl bromide to prepare the octadecyl‐substituted polymer. The microstructure of the obtained polymers was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, and X‐ray diffraction. The thermal behavior of the polymers was investigated by thermogravimetric analysis and differential scanning calorimetry. The morphology of obtained copolymers was studied by scanning electron microscopy. The cyclic voltammetry investigation showed the electroactivity of poly [aniline‐coN‐(2‐hydroxyethyl) aniline] and N and O‐alkylated poly[aniline‐coN‐(2‐hydroxyethyl) aniline]. The conductivities of the polymers were 5 × 10?5 S/cm for poly[aniline‐coN‐(2‐hydroxyethyl) aniline] and 5 ×10?7 S/cm for the octadecyl‐substituted copolymer. The conductivity measurements were performed with a four‐point probe method. The solubility of the initial copolymer in common organic solvents such as N‐methyl‐2‐pyrrolidone and dimethylformamide was greater than polyaniline. The alkylated copolymer was mainly soluble in nonpolar solvents such as n‐hexane and cyclohexane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
We prepared a semi‐IPN (interpenetrating network)‐type solid polymer electrolyte (SPE) using poly (ethylene glycol)dimethacrylate (PEGDMA) as a polymer matrix containing a monocomb‐type poly(siloxane‐g‐allyl cyanide) and poly(ethylene glycol)dimethylether (PEGDME) for the lithium secondary battery. The poly(siloxane‐g‐allyl cyanide)s were prepared by a hydrosilation reaction of poly (methyl hydrosiloxane) with allyl cyanide and characterized by 1H NMR and FTIR. The semi‐IPN‐type electrolyte was prepared by thermal curing, and conductivities of samples were measured by impedance spectroscopy using an indium tin oxide (ITO) electrode. The ionic conductivity of the semi‐IPN‐polymer electrolyte was about 1.05 × 10?5 S cm?1 with 60 wt % of the poly(siloxane‐g‐allyl cyanide) and 6.96 × 10?4 S cm?1 with 50 wt % of the PEGDME and 10 wt % of the poly(siloxane‐g‐allyl cyanide) at 30°C. The SEM morphology of the cross section of the semi‐IPN‐polymer electrolyte film was changed from discontinuous network to continuous network as increasing the PEGDME content and decreasing the poly(siloxane‐g‐allyl cyanide) content. The mechanical stability was also enhanced when increasing the PEGDME content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Wood polymer composites (WPC) based on nano SiO2 and nanoclay were prepared by the impregnation of melamine formaldehyde‐furfuryl alcohol copolymer, 1,3‐dimethylol 4,5‐dihydroxy ethylene urea, a crosslinking agent, and a renewable polymer. Surface modification of SiO2 and formation of composites were characterized by Fourier Transform Infrared Spectroscopy (FTIR). X‐ray diffractometry (XRD) studies indicated a decrease in crystallinity of the composites. The crystallinity index value of wood cellulose decreased from 63.8 to 30.8 as determined from FTIR and XRD studies. Scanning Electron Microscopy was used for morphological characterization. Transmission Electron Microscopy (TEM) showed uniform distribution of nano SiO2 and nanoclay in the composites. Remarkable reduction in water uptake capacity was observed for the treated wood samples. It was found to reduce from 142.2% to 30.2%. Both tensile and flexural properties increased upto 76.5% and 23.6%, respectively in the WPCs. An improvement in chemical resistance, flame retardancy and thermal stability were observed in the composites as a result of treatment. POLYM. ENG. SCI., 54:1019–1029, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
A series of novel sulfonated polyimide (SPI)/crosslinked poly(N‐isopropylacrylamide) (cPNIPAm) semi‐interpenetrating polymer networks (semi‐IPNs) were synthesized as the proton exchange membranes for direct methanol fuel cells via in situ polymerization. The micromorphology and properties of the semi‐IPN membranes were characterized. The results indicated that the hydrogen bonds between cPNIPAm and SPI in the semi‐IPN structure were a crucial factor for regulating the micromorphology, proton conductivity and other properties of the semi‐IPN membranes. A more uniform sulfonic ionic cluster distribution was observed in the membrane of SPI‐20‐cPNIPAm with equimolar ratio of sulfonic acid groups and amido bonds, which could provide effective proton transport channels. The SPI‐20‐cPNIPAm exhibited a maximum proton conductivity of 0.331 S cm?1 at 80 oC (relative humidity 100%), an optimal selectivity of 8.01 × 105 S s cm?3 and an improved fuel cell performance of 72 mW cm?2 compared with both pristine SPI and other semi‐IPN membranes. The SPI‐20‐cPNIPAm semi‐IPN membranes also retained good mechanical properties and thermal stabilities on the whole. © 2014 Society of Chemical Industry  相似文献   

20.
Polyimides with low dielectric constants are important raw materials for the fabrication of flexible printed circuit boards and other microelectronic applications. As creation of voids in polyimide matrix could decrease dielectric constant, in this study mesoporous KIT‐6, synthesized hydrothermally, was functionalized with 3‐aminopropyltriethoxysilane (APTS) and mixed with 4,4′‐oxydianiline (ODA) in the synthesis of terpoly(amic acid) using 3,3′,4,4′‐biphenyldianhydride (BPDA), 3,3′,4,4′‐oxydiphthalic dianhydride (ODPA) and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA) and subsequently stage‐cured to obtain APTS‐KIT‐6/Terpolyimide composites (APTS‐KIT‐6/TPI). The asymmetric and symmetric vibrations of imide O?C? N? C?O groups of APTS‐KIT‐6/TPI composites showed their peaks at 1772 and 1713 cm?1. The dielectric constant decreased with the increase in KIT‐6 loading from 2 to 4%, but increased at higher loadings, and at 4% loading it was 1.42. Its tensile strength (103 MPa), tensile modulus (2.5 GPa), and percentage elongation (8.2) and high thermal stability (>540°C) were also adequate for application in microelectronics such as flexible printed circuits. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40508.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号