首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Multi‐temporal analysis of river‐floodplain processes is a key tool for the identification of reference conditions or benchmarks and for the evaluation of deviations or deficits as a basis for process‐based river restoration in large modified rivers. This study developed a methodology for benchmarking fluvial processes at river segment level, focusing on those interrelations between morphodynamics (aggradation, erosion, channel shift) and vegetation succession (initial, colonization, transition) that condition habitat structure. Habitat maps of the free‐flowing Upper Rhine River downstream from Iffezheim dam (France–Germany border) were intersected with a geographic information system‐based approach. Patches showing trajectories of anthropization, changeless, progression and regression allowed for the identification of natural and human‐induced processes over almost 200 years. Before channelization, the riverine system was characterized by a shifting habitat mosaic with natural heterogeneity, high degree of surface water connectivity and equilibrium between progression and regression processes. On the other hand, the following 175 years of human interventions led to severe biogeomorphologic deficits evidenced by loss of natural processes and habitat heterogeneity, hydrological disconnection between the river and its floodplain and imbalance of progression versus regression dynamics. The main driving forces of change are found in hydromorphological impacts (channelization, regulation and hydropower plant construction). Regression processes are now almost absent and have to be the objective of process‐based river restoration measures for the studied river‐floodplain system. A sustainable view on water management and river restoration should aim at a more resilient riverine system by balancing the recovery of natural processes with societal needs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Based on detailed historical surveys from 1812, the natural riverine landscape of a 10.25‐km‐long reach of the Danube River in the Austrian Machland region prior to channelization is analysed. Anthropogenically induced changes of fluvial dynamics, hydrological connectivity and aquatic habitat composition are discussed, comparing the situations following channelization (1925) and flow regulation (1991). In 1812 the alluvial river–floodplain system of the Danube River comprised a highly complex channel network, numerous gravel bars and extensive islands, with the main channel and side arms (eupotamon) representing about 97% of the entire water surface at low flow. The floodplain was characterized by relatively flat terrain and numerous natural trenches (former active channels) connected to the main channel. These hydromorphological conditions led to marked expansion/contraction of the water surface area at water level fluctuations below bankfull (‘flow pulse’). The high degree of hydrological connectivity enabled intensive exchange processes and favoured migrations of aquatic organisms between the river and floodplain habitats over a period of approximately 90 days per year. Overall in 1812, 57% of the active zone (active channels and floodplain) was inundated at bankfull water level. Channelization and construction of hydropower plants resulted in a truncated fluvial system. Consequently, eupotamal water bodies decreased by 65%, and gravel/sand bars and vegetated islands decreased by 94% and 97%, respectively, whereas the area of the various backwaters doubled. In 1991 the former ‘flow pulse’ was halved due to artificial levees and embankments, greatly diminishing hydrological connectivity and decoupling large areas of the floodplain from the main channel. Active overflow, formerly playing an important role, is now replaced by backwater flooding and seepage inflow in isolated water bodies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Anthropogenic alterations to large rivers ranging from impoundments to channelization and levees have caused many rivers to no longer access the floodplain in a meaningful capacity. Floodplain habitats are important to many riverine fishes to complete their life‐history strategies. The fish community and species of fish that inhabit floodplain habitats are often dictated by the type of habitat and the conditions within that habitat (e.g., temperature, water velocity, depth, and discharge). As mitigation and restoration projects are undertaken, it is imperative that managers understand how various habitat components will affect the fish community in floodplain habitats. We collected fish and habitat data from two restored side channels with different structural designs on the lower Platte River, Nebraska, to determine how habitat variables predicted species diversity and individual species presence. We found a decrease in discharge in the main‐stem river resulted in increased diversity in one of the side channels, with the greatest diversity values occurring during summer. No habitat variables performed well for predicting fish species diversity for an adjacent side channel with more uniform depth and velocity and no groundwater inputs. However, several native riverine fish species in this side channel were shown to be associated with high temperature, dissolved oxygen, main‐stem discharge, and discharge variability. These results highlight the importance of considering the physical design of restored floodplain habitats when attempting to enhance fish communities.  相似文献   

4.
The rehabilitation of lowland rivers subjected to channelization and artificial levee construction should attempt to improve habitat heterogeneity and diversity of floodplain hydrological connectivity. However, rehabilitation efforts rarely consider the importance of variable lateral hydrological connectivity between floodplain waterbodies and main river channels (ranging from those permanently connected to those temporarily connected during river level rises), instead focusing on increasing individual floodplain waterbody connectivity. This study investigated the young‐of‐the‐year (YoY) fish communities in 10 artificial floodplain waterbodies of variable hydrological connectivity with the river Trent, England, between May and November 2006, inclusive. Floodplain waterbody connectivity to the main river was positively correlated with the number of species captured (alpha diversity), Shannon–Wiener diversity, Margalef's species richness index and the relative abundance of rheophilic species and negatively correlated with species turnover (beta diversity). YoY fish communities in poorly connected water bodies were most dissimilar to riverine communities. The results demonstrate the importance of variable lateral connectivity between artificial floodplain waterbodies and main river channels when rehabilitating lowland river fish communities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Floodplain habitats provide critical spawning and rearing habitats for many large‐river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Current efforts to yield an appropriate method that would simplify the use of phytoplankton in the ecological evaluation of freshwaters resulted in different approaches based on clustering phytoplankton organisms. In this study, we applied the morphology‐based functional group (MBFG) concept to determine the spatial changes of phytoplankton in the natural riverine floodplain of the alluvial reaches of the Danube River along the horizontal gradient from the river towards the floodplain habitats. The obtained results showed that the magnitude of environmental changes depended on alternations in hydrological variables (hydropattern and water level) that influenced changes in the physical and chemical conditions. High‐intensity flood pulses caused environmental homogenizations and nitrate enrichment of the floodplain habitats. Phytoplankton dynamics were strongly associated with the environmental changes, and using the MBFG approach, two basic hydrological conditions were identified: inundation phase dominated by diatoms (GVI) and isolation phase dominated by filamentous cyanobacteria (GIII). Total diatom biomass decreased along the floodplain gradient with a diminishing of physical constraints, and site‐specific variables became more important in favouring diatom assemblages. The different response of cyanobacterial species to mixing regime was of particular significance for species successions during bloom period. Altogether, classifying very diverse diatoms (centrics and pennates and planktonic and benthic) and cyanobacterial taxa into single groups represents a weakness of the MBFG approach, which might make it impossible to reflect all the ecological differences governed by environmental constraints along river–floodplain gradients. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Loss of habitat complexity through river channelization can have adverse affects on riverine fauna and flora through reductions in abundance and diversity of species. Habitat enhancement schemes are used to improve the physical and biological heterogeneity of riverine habitats. Between 1996 and 1997 the Environment Agency undertook a habitat enhancement scheme on the Huntspill River, Somerset, England to improve conditions for coarse (non‐salmonid) fishes. The scheme involved reducing bank gradients and the construction of off‐channel bays in parts of the channel, all of which were planted with willow (Salix sp.) and common reed (Phragmites australis). The effectiveness of the enhancement scheme was investigated by comparing 0‐group fish assemblages in manipulated and unmanipulated sites. Abundance and diversity of 0‐group fishes was significantly higher in manipulated habitats. There was no significant difference detected in the effects of the different types of enhancement measure used. The significance of microhabitats produced by habitat enhancement schemes is discussed with respect to spawning, nursery and refuge sites for 0‐group coarse fish assemblages. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Floodplain waterbodies are reputed to enhance recruitment of riverine fish populations via provision of spawning and nursery habitat, refuge from floods, and increased availability of planktonic food resources compared with main river channels. Notwithstanding, there have been few parallel studies of fishes and their food resources at both main river and floodplain sites. Thus, this study investigated the 0+ fishes, zooplankton and phytoplankton (chlorophyll a) at four main river and four (man‐made) floodplain sites on the lower River Trent, England, between May 1999 and October 2004 inclusive. All sites shared the same key fish species, and there were no consistent differences in the densities, growth or condition of 0+ fishes from main river and floodplain sites. Similarly, all sites shared the same key zooplankton taxa. However, zooplankton densities, notably of large‐bodied cladocerans, and chlorophyll a concentrations, were significantly higher at floodplain sites than at main river sites. Thus, connection of man‐made waterbodies has the potential to enhance recruitment of riverine fish populations via provision of important spawning and nursery habitat, and superior feeding opportunities for 0+ fishes compared with main river channels. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The aim of this study was to investigate and compare the flora and vegetation of three well‐preserved hardwood floodplain forest areas along the river Danube and to discuss whether possible differences between the floodplain forests can be linked to river eutrophication. Flora and vegetation data from three study areas located on the Upper, Middle and Lower Danube in Central and Eastern Europe were compared using univariate and multivariate statistical methods. Special attention was paid to floristic composition, plant functional types, and ecological indicator values. We found that the three studied hardwood floodplain forests appeared to be rather different regarding floristic composition and herb‐layer vegetation. Despite the high beta diversity, the distribution of the plant functional types indicated generally equal habitat conditions, which were quite stable. The diversity of herb‐layer vegetation decreased downstream, while the indicators of nutrient availability pointed to increasing nutrient supply. The factor light apparently played a minor role for herb‐layer diversity. There is a remarkable congruence between the results of our floodplain vegetation analysis and the longitudinal river eutrophication patterns as described in the literature. We conclude that the nutrient input into Danubian hardwood floodplain forests increased downstream, resulting in higher nutrient availability for plants. This promoted especially the growth of tall and competitive forbs, which outcompeted other plant species. Even if the importance of the various eutrophication patterns is difficult to quantify, our study provides evidence that anthropogenic eutrophication has a distinct effect on the flora and vegetation of Danubian hardwood floodplain forests. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Despite the increasing use of fatty acids (FAs) as biomarkers in aquatic food web analysis, little information is available regarding differences in FA profiles of fish among habitat types in river–floodplain ecosystems. The objectives of this study were to (i) test whether the FA profiles of channel catfish (Ictalurus punctatus) differed among three reaches of the lower Kaskaskia River and its floodplain lakes, and (ii) to compare FA profiles among muscle, liver, and adipose fin tissues collected from these fish. Profiles differed significantly among sites, especially between upper and lower river sites, and between river channel and oxbow lake sites, suggesting differences in FA availability for channel catfish occupying different habitats and river reaches in the Kaskaskia River system. Specifically, the essential FAs 18:2n‐6 and 18:3n‐3 increased in catfish tissues from upstream to downstream reaches, which could reflect increased floodplain connectivity and decreasing impoundment effects downstream. Ratios of n‐3 to n‐6 FAs were higher in fish from oxbow lakes, perhaps suggesting increased use of autochthonous production in the floodplain relative to the main river channel. Muscle and adipose fin FA profiles exhibited similar location‐related trends, whereas liver FA profiles were markedly different from the other tissue types. These results suggest that adipose fin tissue samples may be a viable, less‐invasive alternative to muscle tissue for analysis of FA profiles in channel catfish. Our study supports the use of tissue FA profiles in identifying habitat utilization by channel catfish, and perhaps habitat‐specific energy contributions to riverine consumers. Furthermore, our work highlights floodplain habitat as a potential source of essential n‐3 FA and the associated importance of maintaining river–floodplain connectivity to support aquatic food webs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents the first study of the benthic invertebrate assemblages of the upper section of the Paraguay River, a major tributary to the Pantanal wetland in Brazil. Thirty‐eight sites were sampled along a 200 km section below the city of Cáceres in November 2000. Sixty‐nine species and morphospecies were identified, which were dominated by Oligochaeta and Chironomidae. Mean density of benthic invertebrates varied between 72 and 10 354 m?2 in the meandering sector of the river, 3611–49 629 m?2 in the straight–transitional sectors, 682–5962 m?2 in the floodplain lakes, and 1704–2208 m?2 in floodplain channels. Highest densities were attained in sand‐gravel sediments dominated by the psammophilous oligochaete Narapa bonettoi. The Shannon diversity index ranged from 0.75 to 2.08 and was highest in floodplain lakes. Statistical analysis (UPGMA and CCA) revealed that benthic assemblages in the floodplain habitats were clearly distinct from the riverine habitats. In the river channel, the habitats were distinguished by grain size while the floodplain habitats were mostly determined by current and silt‐clay concentration (floodplain channels) or by organic matter concentration (floodplain lakes). Conservation efforts in the Upper Paraguay area should aim to maintain the flood pulse as a permanent source of spatial and temporal habitat heterogeneity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
In large European rivers the chemical water quality has improved markedly in recent decades, yet the recovery of the fish fauna is not proceeding accordingly. Important causes are the loss of habitats in the main river channels and their floodplains, and the diminished hydrological connectivity between them. In this study we investigate how river regulation has affected fish community structure in floodplain waterbodies of the rivers Rhône (France), Danube (Austria), Rhine and Meuse (The Netherlands). A typology of natural and man‐made aquatic habitats was constructed based on geomorphology, inundation frequency and ecological connectivity, along the transversal river–floodplain gradient, i.e. perpendicular to the main stream of the river. Fish species were classified in ecological guilds based on their flow preference, reproduction ecology and diet, and their status on national red lists was used to analyse the present state of the guilds and habitats. Ecological fish guilds appear to be good indicators of ecological integrity and functioning of river–floodplain systems. A transversal successional gradient in fish community structure that bears some resemblance to the gradient found in natural rivers can still be discerned in heavily regulated rivers. It resembles the longitudinal river gradient; even some predictions of the River Continuum Concept are applicable. Overall, richness and diversity of species and ecological guilds decrease with decreasing hydrological connectivity of floodplain waterbodies. Anthropogenic disturbances have affected fish species unevenly: guilds of specialized species that are highly adapted to specifically riverine conditions have declined far more than generalist species. Fish habitats in the main and secondary channels have suffered most from regulation and contain the highest percentage of threatened species. Rheophilic fishes have become rare because their lotic reproductive habitats are severely degraded, fragmented, absent or unreachable. Limnophilic fishes have become rare too, mainly as a result of eutrophication. Eurytopic fishes have become dominant everywhere. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
We conducted a regional classification and analysis of riverine floodplain physical features that represent key attributes of salmon rearing habitats. Riverine habitat classifications, including floodplain area and river channel complexity, were derived at moderate (30 m) spatial resolution using multispectral Landsat imagery and global terrain data (90 m) encompassing over 3 400 000 km2 and most North Pacific Rim (NPR) salmon rivers. Similar classifications were derived using finer scale (i.e. ≤ 2.4‐m resolution) remote sensing data over a smaller set of 31 regionally representative flood plains. A suite of physical habitat metrics (e.g. channel sinuosity, nodes, floodplain width) were derived from each dataset and used to assess the congruence between similar habitat features at the different spatial scales and to evaluate the utility of moderate scale geospatial data for determining abundance of selected juvenile salmon habitats relative to fine scale remote sensing measurements. The resulting habitat metrics corresponded favorably (p < 0.0001) between the moderate scale and the fine scale floodplain classifications; a subset of these metrics (channel nodes and maximum floodplain width) also were strong indicators (R2 > 0.5, p < 0.0001) of floodplain habitats defined from the finer scale analysis. These relationships were used to estimate the abundance and distribution of three critical shallow water floodplain habitats for juvenile salmon (parafluvial and orthofluvial springs, and shallow shore) across the entire NPR domain. The resulting database provides a potential tool to evaluate and prioritize salmon conservation efforts both within individual river systems and across major catchments on the basis of physical habitat distribution and abundance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Turtle populations are imperiled worldwide, but limited ecological information from unaltered systems hampers science‐based management and conservation of some species, especially riverine turtles such as the spiny softshell (Apalone spinifera). We therefore investigated movements and spatial habitat selection of 54 A. spinifera in 633 river kilometres (rkm) of the least‐altered river in the conterminous United States—the Yellowstone River in Montana—from 2005 to 2009. Movement rates and home ranges were smaller than in fragmented, altered river systems because nesting and overwintering habitats were common and in close proximity. Habitat selection also differed. A. spinifera in the Yellowstone River overwintered in unaltered bluff pools and summered in complex reaches with side channels, islands, and diverse habitats. However, those in the highly altered Missouri River used deep alluvial pools for overwintering and flooded, inundated, or backwatered tributary mouths in spring and summer. Importantly, selected habitats in both rivers were functionally similar, including complex river reaches (with multiple channels, islands, and diverse habitats) and natural pool types. Unfortunately, these are the very habitats that are limited in rivers affected by dams, bank stabilization, and channelization. Therefore, preservation of natural and diverse riverine habitats—and the fluvial dynamics that maintain them—may enhance conservation of A. spinifera in large rivers.  相似文献   

15.
Setback levees, in which levees are reconstructed at a greater distance from a river channel, are a promising restoration technique particularly for alluvial rivers with broad floodplains where river‐floodplain connectivity is essential to ecological processes. Documenting the ecological outcomes of restoration activities is essential for assessing the comparative benefits of different restoration approaches and for justifying new restoration projects. Remote sensing of aquatic habitats offers one approach for comprehensive, objective documentation of river and floodplain habitats, but is difficult in glacial rivers because of high suspended‐sediment concentrations, braiding and a lack of large, well‐differentiated channel forms such as riffles and pools. Remote imagery and field surveys were used to assess the effects of recent and planned setback levees along the Puyallup River and, more generally, the application of multispectral imagery for classifying aquatic and riparian habitats in glacial‐melt water rivers. Airborne images were acquired with a horizontal ground resolution of 0.5 m in three spectral bands (0.545–0.555, 0.665–0.675 and 0.790–0.810 µm) spanning from green to near infrared (NIR) wavelengths. Field surveys identified river and floodplain habitat features and provided the basis for a comparative hydraulic analysis. Broad categories of aquatic habitat (smooth and rough water surface), exposed sediment (sand and boulder) and vegetated surfaces (herbaceous and deciduous shrub/forest) were classified accurately using the airborne images. Other categories [e.g. conifers, boulder, large woody debris (LWD)] and subdivisions of broad categories (e.g. riffles and runs) were not successfully classified either because these features did not form large patches that could be identified on the imagery or their spectral reflectances were not distinct from those of other habitat types. Airborne imagery was critical for assessing fine‐scale aquatic habitat heterogeneity including shallow, low‐velocity regions that were not feasible or practical to map in the field in many cases due to their widespread distribution, small size and poorly defined boundaries with other habitat types. At the reach‐scale, the setback levee affected the amount and distribution of riparian and aquatic habitats: (1) the area of all habitats was greater where levees had been set back and with relatively more vegetated floodplain habitat and relatively less exposed sediment and aquatic habitat, (2) where levees confine the river, less low‐velocity aquatic habitat is present over a range of flows with a higher degree of bed instability during high flows. As river restoration proceeds in the Pacific Northwest and elsewhere, remotely acquired imagery will be important for documenting its effects on the amount and distribution of aquatic and floodplain habitats, complimenting field data as a quantitative basis for evaluating project efficacy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
While much is known about the fish assemblages, habitats, and ecology of rivers and reservoirs, there has been limited study of the fish assemblages in transitional habitats between these lotic and lentic habitats. Data about these river–reservoir interface (RRI) fish assemblages are needed to guide integrated management efforts of river–reservoir ecosystems. The aim of these efforts is to recommend flows for natural river function, conserve native riverine fish assemblages, and maintain reservoir sport fisheries. We used a multigear approach to assess the fish assemblages of four RRIs in the Colorado River Basin, Texas. In addition to characterizing RRI fish assemblages using species richness and evenness metrics, and habitat‐use guilds, we used a multivariate approach to evaluate intra‐annual shifts in species composition and abundance. All RRIs had high species richness and evenness values and included both macrohabitat generalist and fluvial species. RRIs also contained high proportions of the fish species available within each river–reservoir ecosystem, ranging from 55% to 80%. Observed intra‐annual shifts in RRI fish assemblages resulted from changes in abundance of dominant species rather than changes in species composition, with abundance of most species increasing from early spring to summer. Fish species responsible for intra‐annual shifts included mostly floodplain and migratory species, suggesting that species both used littoral habitats within RRIs and migrated through RRIs to river and reservoir habitats. The diversity of fishes found within RRIs highlights the importance of including these areas in future conservation and management efforts of river–reservoir ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Responses of waterbirds to habitat variation could account for their responses to fluctuations in river levels because hydrological fluctuations influence habitat availability across floodplains. Relationships between water level and waterbird occurrence were examined in floodplain wetlands of the Middle Paraná River to assess (a) whether occurrences of waterbird species were associated with water‐level fluctuations of the river, (b) which habitats were associated with species that showed a relationship with water level, (c) the influence of water level on these habitats, and (d) whether influence of water level on these species was related to water‐level influence on habitats. Through the use of regressions and structural equation models, we assessed whether direct relationships between each species and water level remained important after considering the influence of habitat variation. Of 21 species analysed, occurrences of 12 species showed an association with water‐level fluctuations. Indirect effects of water level through habitats fully accounted for this association in 5 species. Variation in habitat conditions did not, however, fully account for responses of 6 species, suggesting that although habitat variation can be an important factor, other variables are necessary to explain responses of some species to water level. One species was not associated with any habitat and therefore was not included in this analysis. Our results agreed with the idea that an important fraction of waterbird responses to hydrological fluctuations is related to the effects of these fluctuations on the availability of habitats across the floodplain. Our results provide data that help delimit groups of waterbird species that respond in similar ways to hydrological fluctuations.  相似文献   

18.
Seasonal flooding of riverine backwaters is important in maintaining diverse aquatic habitats, but anthropogenic impacts have reduced the frequency and duration of such flooding. This study, conducted in a 2.5‐km‐long shallow floodplain severed meander backwater adjacent to the Coldwater River in Tunica County, Mississippi, USA, compared water quality during a late summer 30‐day artificial flooding period with 28‐day pre‐flood and 26‐day post‐flood periods. Flooding was simulated by pumping 0.22 to 0.35 m3 s?1 from the river into the upstream portion of the backwater. In situ parameters (temperature, pH, dissolved oxygen, conductivity and fluorescent chlorophyll) were measured every 30 min at one site within the backwater. Solids (dissolved and suspended) and nutrients (phosphorus and nitrogen) were measured at three sites in the backwater and in the river every 3 to 5 days. Decreases in the amplitude of temperature, dissolved oxygen and pH diel cycles within the backwater were observed during flooding. Changes in patterns of solids and nutrients were also associated with flooding. Complex patterns in phosphorus and nitrogen emerged as a result of utilization by autotrophs (measured as chlorophyll) and seasonal changes. Artificial flooding in a shallow floodplain water body stabilized and improved water quality for aquatic biota and is a viable method for habitat rehabilitation in these systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Floodplains and their associated wetlands are important features of semiarid and arid landscapes, providing habitat and refugia for native species as well as contributing to human needs for freshwater. Globally, floodplain habitats are some of the most modified ecological communities because of water resource development and land‐use changes. However, the hydrological changes that have occurred in highly variable semiarid and arid systems are rarely quantified in a way that helps us understand the consequences for different floodplain habitat types. This study investigated changes in floodplain‐river connectivity that have occurred because of water resource development on four floodplain habitat types in the Lachlan River Catchment, Australia: (a) temporary floodplain lakes, (b) intermittent river red gum (Eucalyptus camaldulensis) swamps, (c) intermittent black box (Eucalyptus largiflorens) swamps, and (d) terminal wetlands (wetlands along distributary creeks). Changes to floodplain‐river connectivity characteristics were calculated using their commence to fill thresholds and flow scenarios derived from a river hydrology model, enabling comparison of long‐term data sets (120 years) encompassing a range of climate conditions. Connection regime metrics have changed significantly in all floodplain habitats except intermittent black box swamps. Temporary floodplain lakes have experienced the greatest reduction in number of connection events (60% reduction), followed by intermittent river red gum swamps (55% reduction). Intermittent black box swamps and terminal wetlands have experienced the least change in number of connection events (35% reduction). The nature of the change in connection suggests a change in vegetation communities will occur in response to long‐term hydrological change.  相似文献   

20.
The impact of river incision induced by channelization and gravel mining on the structure of ground beetle assemblages in riparian habitats was investigated on three montane rivers in southern Poland. Ground beetles were collected on three benches of different elevation in 11 incised and 14 vertically stable cross sections of the rivers. In total, 5821 individuals representing 106 species were collected. The effect of river incision on the diversity and abundance of ground beetles depended on bench height. Only on the lowest bench, inundated about once per year on average, species richness of the assemblages was significantly reduced in incised river cross sections. On this bench, the abundance of the specialists of exposed riverine sediments, i.e. small and medium‐sized predators with high dispersal power and spring breeding strategy, was highly negatively affected by river incision. On the highest bench, large, brachypterous species with spring and autumn breeding strategy, typical of undisturbed habitats, were more abundant in incised cross sections. As this bench is practically not subjected to flooding even in vertically stable cross sections, these species probably benefited from the occurrence of riparian forest along most incised river sections, whereas the riparian areas along vertically stable sections are subjected to higher agricultural pressure. This study shows that in the mountain region where high precipitation helps to maintain moisture of the riparian habitats, river incision has a negative impact only on the specialists of exposed riverine sediments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号