共查询到20条相似文献,搜索用时 0 毫秒
1.
The mathematical model developed for the molten steel flow in the combined side and top blowing AOD refining process of stainless steel has been used to compute and analyze the flow fields of the liquid phases in the baths of the 120 t AOD converter and its water model unit with a 1/4 linear scale. The influence of the side tuyere number and the angle between each tuyere on the flows has been examined. The results demonstrate that the mathematical model can quite reliably and well model and predict the fluid flow in an AOD bath with the combined blowing. The liquid flow in an AOD converter bath with the combined blowing is resulted from the gas side blowing streams under the influence of a gas top blowing jet. The streams play a governing role on it; and the liquid in the whole bath is in active agitation and circulatory motion during the gas blowing process. The gas jet from the top lance does not change the essential features of the gas stirring and liquid flow in the bath, but can make the local flow pattern of the bath liquid obviously vary and its turbulent kinetic energy enhance. The changes in the tuyere position and number have similarly not altered the basic characteristics and patterns of the gas agitation and liquid flow and turbulent kinetic energy distribution in the bath. At a given tuyere number and gas side blowing rate or a given angular separation between each tuyere and gas side blowing rate, however, the variation of the angle between each tuyere or the tuyere number can locally change them. Using 6 tuyeres with 27° can reach the more uniform flow field and turbulent energy distribution of the liquid in the bath than taking 7 tuyeres with 18° or 22.5° and 6 tuyeres with 22.5°. 相似文献
2.
Ji‐He Wei Hong‐Li Zhu Sen‐Long Yan Xin‐Chao Wang Jin‐Chang Ma Guo‐Min Shi Qing‐Yan Jiang He‐Bing Chi Li‐Bing Che Kai Zhang 《国际钢铁研究》2005,76(5):362-371
The fluid mixing characteristics in the bath during the side and top combined blowing AOD (argon‐oxygen decarburization) refining process of stainless steel were preliminarily investigated on a water model unit of a 120 t AOD converter. The geometric similarity ratio between the model and its prototype (including the side tuyeres and the top lances) was 1:4. On the basis of the theoretical calculations for the parameters of the gas streams in the side tuyeres and the top lances, the gas blowing rates used for the model were more reasonably determined. The influence of the tuyere number and position arrangement, and the gas flow rates for side and top blowing on the characteristics was examined. The results demonstrated that the liquid in the bath underwent vigorous circulatory motion during gas blowing, without obvious dead zone in the bath, resulting in a high mixing effectiveness. The gas flow rate of the main tuyere had a governing role on the characteristics, a suitable increase in the gas flow rate of the subtuyere could improve mixing efficiency, and the gas jet from the top lance made the mixing time prolong. Corresponding to the oxygen top blowing rate specified by the technology, a roughly equivalent and good mixing effectiveness could be reached by using six side tuyeres with an angle of 27 degrees between each tuyere, and five side tuyeres with an angular separation of 22.5 or 27 degrees between each tuyere. The relationships of the mixing time with the gas blowing rates of main‐tuyeres and sub‐tuyeres and top lance, the angle between each tuyere, and the tuyere number were evaluated. 相似文献
3.
The fluid flow in a bath in combined top and bottom blowing vacuum‐oxygen decarburization (VOD) refining process of stainless steel has numerically been simulated. The three‐dimensional mathematical model used is essentially based on that proposed in our previous work for the flow in combined side and top blowing argon‐oxygen decarburization (AOD) process, but considering the influence of reduced ambient pressure. Applying it to the flow in the bath of a 120 t VOD vessel under the refining conditions, the results present that the model can fairly well simulate and estimate the flow phenomena. The flow pattern of molten steel in the bath with the combined blowing is a composite result under the common action of the jets from a three‐hole Laval top lance and gas bottom blowing streams. The jets have a leading role on it; the molten steel in the whole bath is in vigorous stirring and circulatory motion during the blowing process. The streams do not alter the basic features of the gas agitation and liquid flow, but can evidently change the local flow pattern of the liquid and increase its turbulent kinetic energy to a certain extent. The flow field and turbulent kinetic energy distribution in the combined blowing with three tuyeres are more uniform than those in the blowing with double tuyeres. Increasing properly the tuyere eccentricities is of advantage for improving the velocity and turbulent kinetic energy distributions, the stirring and mixing result in the practical VOD refining process. 相似文献
4.
5.
Guo‐Min Shi Ji‐He Wei Hong‐Li Zhu Jie‐Hui Shu Qing‐Yuan Jiang He‐Bing Chi 《国际钢铁研究》2007,78(4):311-317
The changes in the contents of C, Cr, Si, and Mn in molten steel and the bath temperature during the refining of 304‐grade stainless steel, including both the oxidation (decarburization) and reduction processes, in a side and top combined blowing AOD converter of 120 t capacity have been predicted. The calculations were performed using the mathematical model proposed and presented in Part I of the present work [1] and were based on the designed operational mode of the AOD converter. The model predictions were compared to the referenced values given by the technological design. The results demonstrate that the predictions by the model are in good agreement with the reference values. Not only the competition of oxidation among the elements dissolved in the steel during the oxidative refining process and the corresponding distribution ratios of oxygen, but also the competition of reduction among the oxides during the argon stirring and reductive refining process and the relevant supplied oxygen ratios of the oxides, can all be characterized more comprehensively and determined more reasonably by using the Gibbs free energies of the oxidation and reduction reactions. Corresponding to the top, side, and side and top combined (overall) refining processes of 304‐grade stainless steel in a 120 t AOD converter, the carbon concentrations at the critical rates, i.e. the critical carbon concentrations, after which the decarburization changes to be controlled by the mass transfer of carbon in molten steel, are 1.20, 0.37 and 0.53 mass%, respectively, under the given designed operational mode. The model can offer some useful information for determining the technology of the side and top combined blowing AOD refining process of stainless steel. 相似文献
6.
The mass transfer characteristics in a steel bath during the AOD refining process with the conditions of combined side and top blowing were investigated. The experiments were conducted on a water model unit of 1/4 linear scale for a 120‐t combined side and top blowing AOD converter. Sodium chloride powder of analytical purity was employed as the flux for blowing, and the mass transfer coefficient of solute (NaCI) in the bath was determined under the conditions of the AOD process. The effects of the gas flow rates of side and top blowing processes, the position arrangement and number of side tuyeres, the powdered flux particle (bubble) size and others on the characteristics were examined. The results indicated that, under the conditions of the present work, the mass transfer coefficient of solute in the bath liquid is in the range of (7.31×10?5‐3.84×10?4) m/s. The coefficient increases non‐linearly with increasing angle between each tuyere, for the simple side blowing process at a given side tuyere number and gas side blowing rate. The gas flow rate of the main tuyere has a governing influence on the characteristics, and the gas jet from the top lance decreases the mass transfer rate, the relevant coefficient being smaller than that for a simple side blowing. Also, in the range of particle (bubble) size used in the present work and with all other factors being constant, raising particle (bubble) size increases the coefficient. Excessively fine powder particle (bubble) sizes are not advantageous to strengthening the mass transfer. With the oxygen top blowing rate practiced in the industrial technology, the side tuyere arrangements of 7 and 6 tuyeres with an angular separation of 22.5° and 27° between each tuyere, as well as 5 tuyeres with an angle of 22.5° between each tuyere can provide a larger mass transfer rate in the bath. Considering the relative velocity of the particles to the liquid, the energy dissipation caused by the fluctuation in the velocity of the liquid in turbulent flow and regarding the mass transfer as that between a rigid bubble and molten steel, the related dimensionless relationships for the coefficient were obtained. 相似文献
7.
Hong‐Li Zhu Ji‐He Wei Guo‐Min Shi Jie‐Hui Shu Qing‐Yuan Jiang He‐Bing Chi 《国际钢铁研究》2007,78(4):305-310
Mathematical modeling of stainless steelmaking in an AOD (argon‐oxygen decarburisation) converter with side and top combined blowing has been preliminarily investigated. The actual situations of the side and top combined blowing AOD process were analysed. A mathematical model for the whole refining process of stainless steel has been proposed and developed. The model is based on the assumption that one part of the oxygen blown through a top lance reacts with CO escaping from the bath, another part of the oxygen oxidizes the elements in the molten steel droplets splashed by the oxygen jet, and the remaining oxygen penetrates and dissolves into the molten steel through the pit stroked by the jet. All the oxygen entering into the bath oxidizes C, Cr, Si, and Mn dissolved in the steel and also the Fe of the steel melt, but the FeO generated is also an oxidant of C, Cr, Si, and Mn in the steel. During the process, all possible oxidation‐reduction reactions occur simultaneously and reach their equilibria, respectively their combined equilibrium, in competition at the liquid/bubble and liquid/slag interfaces. In the simple side blowing after the top blowing operation is finished, the possible reactions take place simultaneously and reach a combined equilibrium in competition at the liquid/bubble interfaces. The overall decarburization rate in the refining process is the sum of the contributions of both the top and side blowing processes. It is also assumed that at high carbon concentrations, the oxidation rates of elements are mainly dependent upon the supplied oxygen rate, and at low carbon contents, the rate of decarburisation is primarily related to the mass transfer of carbon from the molten steel bulk to the interface. It is further assumed that the non‐reacting oxygen blown into the bath does not accumulate in the steel and will escape from the bath and react with CO in the atmosphere above the bath. The study presents calculations of the refining rate and the mass and heat balances of the system for the whole process. Additionally, the influences of the operating factors, including addition of slag materials, scrap, and alloy agents, the non‐isothermal conditions, the changes in the amounts of metal and slag during the whole refining process, and others have all been considered. 相似文献
8.
A three‐dimensional mathematical model for the molten steel flow in a degasser during the RH refining process has been proposed and developed. The physical characteristics of the process, particularly the behaviour of gas‐liquid two‐phase flow in the up‐snorkel and the momentum exchange between the two phases are considered. The ladle, snorkels and vacuum vessel are regarded as a whole in the model, and the gas‐liquid two‐phase flow is treated and described on the basis of the two‐fluid model and using the especially modified two‐equation κ‐? model. The details of the model are presented. 相似文献
9.
A three‐dimensional mathematical model for the molten steel flow during the RH refining process has been applied to the circulatory flow processes in both a practical RH degasser and its water model unit. The model was presented earlier [1] and one of its characteristics is that ladle, snorkels and vacuum vessel are regarded as a whole. Using this model, the fluid flow field and the gas holdups of liquid phases and others have been computed respectively for a 90 t RH degasser and its water model unit with a 1/5 linear scale. The results show that the mathematical model can properly describe the flow pattern of molten steel during the refining process in an RH degasser. Except in the area close to the liquid's free surface and in the zone between the two snorkels in the ladle, a strong mixing of the molten steel occurs, especially in the vacuum vessel. However, there is a boundary layer between the descending liquid stream from the down‐snorkel and its surrounding liquid, which is a typical liquid‐liquid two‐phase flow, and the molten steel in the ladle is not in a perfect mixing state. The lifting gas blown is ascending mostly near the up‐snorkel wall, which is more obvious under the conditions of a practical RH degasser, and the flow pattern of the bubbles and molten steel in the up‐snorkel is closer to an annular flow. The calculated circulation rates for the water model unit at different lifting gas rates are in good agreement with experimentally determined values. 相似文献
10.
基于气液双流体模型和湍流的修正k-ε模型,考虑了多股气流侧吹操作对熔池流场的影响,以及AOD熔池内气液两相流的行为和两相间的动量传输,建立了AOD多股气流侧吹精炼过程中熔池内流体流动的数学模型,并对宝钢股份不锈钢事业部120 tAOD原型和线尺寸为其1/4的水模型熔池内流体的流动作了模拟,结果表明,确实可以采用双流体模型来模拟AOD精炼过程中熔池内流体的流动;用该模型计算的结果表明,整个熔池流体处于活泼的搅拌和循环运动状态。 相似文献
11.
12.
13.
14.
近年来中国不锈钢的产量及国内市场消费量均已达世界第一,2009年不锈钢产能为1 400万t,其中先进装备产能达到70%以上,产业集中度要高于其他钢铁产品,然而在精炼生产过程控制、产品质量方面,与国外仍有一定的差距.鉴于此,介绍了国内外不锈钢精炼的数学、物理及过程控制模型,讨论了不锈钢中非金属夹杂物的形成机制及其在精炼、... 相似文献
15.
The characteristics of the non‐equilibrium decarburization process during the vacuum circulation (RH) refining of molten steel have been considered and analysed. On the basis of the fundamentals of metallurgical reaction engineering and non‐equilibrium thermodynamics, as well as the two‐fluid model for gas‐liquid two‐phase flow and a modified k‐? model for turbulent flow, a novel three‐dimensional mathematical model for the process has been proposed and developed. The details of the model, including the establishment of the governing equations and the especially modified two‐equation k‐? model, the determination of the appropriate source terms and boundary conditions and others, have been presented. The related parameters of the model have been discussed and determined for the decarburization refining process of molten steel in a 90‐t multifunction RH degasser under RH and RH‐KTB operating conditions. 相似文献
16.
17.
18.
19.
Fluid Flow and Interfacial Phenomenon of Slag and Metal in Continuous Casting Tundish With Argon Blowing 总被引:1,自引:0,他引:1
The fluid flow and the interfacial phenomenon of slag and metal in tundish with gas blowing were studied with mathematical and physical modeling, and the effects of gas flowrate, the placement of porous beam for the generation of bubbles, and the combination of flow control devices on the flow and slag-metal interface were investigated. The results show that the position of gas bubbling has a significant effect on the flow in tundish, and the placement of porous beam and gas flowrate are the two main factors affecting the entrapment of slag in tundish. The closer the porous beam to the weir, the more reasonable is the flow, which is in favor of the control of slag entrapment in tundish. 相似文献
20.
A novel three‐dimensional mathematical model proposed and developed for the non‐equilibrium decarburization process during the vacuum circulation (RH) refining of molten steel has been applied to the refining process of molten steel in a 90‐t multifunction RH degasser. The decarburization processes of molten steel in the degasser under the conditions of RH and RH‐KTB operations have been modelled and analysed, respectively, using the model. The results demonstrate that the changes in the carbon and oxygen contents of liquid steel with the treatment time during the RH and RH‐KTB refining processes can be precisely modelled and predicted by use of the model. The distribution patterns of the carbon and oxygen concentrations in the steel are governed by the flow characteristics of molten steel in the whole degasser. When the initial carbon concentration in the steel is higher than 400 · 10−4 mass%, the top oxygen blowing (KTB) operation can supply the oxygen lacking for the decarburization process, and accelerate the carbon removal, thus reaching a specified carbon level in a shorter time. Moreover, a lower oxygen content is attained at the decarburization endpoint. The average contributions at the up‐snorkel zone, the bath bulk and the free surface with the droplets in the vacuum vessel in the refining process are about 11, 46 and 42% of the overall amount of decarburization, respectively. The decarburization roles at the gas bubble‐molten steel interface in the up‐snorkel and the droplets in the vacuum vessel should not be ignored for the RH and RH‐KTB refining processes. For the refining process in the 90‐t RH degasser, a better efficiency of decarburization can be obtained using an argon blow rate of 417 I(STP)/min, and a further increase in the argon blowing rate cannot obviously improve the effectiveness in the RH refining process of molten steel under the conditions of the present work. 相似文献