首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the issue concerning model‐based adaptive control for a differentially driven wheeled mobile robot is addressed. By choosing state variables directly related to its speeds (linear and angular), the robot's dynamic model becomes simple with good properties. The controller takes account of the robot dynamics and the coupling between the motions of two wheels, and thus achieves better speed tracking than commonly used model‐free PID controller does. The effectiveness of the model free controllers (mostly PID) in some situations is also discussed. Simulation studies are done to verify the effectiveness of the proposed approaches. © 2005 Wiley Periodicals, Inc.  相似文献   

2.
Wheel robot soccer speed control system using a ball object detection method and PID controller. A control system is based on the object detection system's behavior based on the robot position's orientation to the target position. PIDs are instruments, pressure, speed, and other operational factors used in control, temperature adjustment flow, and industrial control applications. The PID controller uses control loop feedback dynamics to control functional variables and is the most accurate and stable controller. The robot position is held by placing the ball vertically. When the robot's work is perpendicular to the ball, the robot moves with a certain speed controlled by the PIT controller based on the robot's distance and the ball. Standard conditions (standard ball) test results show that the robot can detect the ball material while in the vertical position, whether on the robot's right or left. In the random test that changes direction, the robot can move more dynamically as the ball's change in place.  相似文献   

3.
In this paper, both the dynamics and noncollocated model‐free position control (NMPC) for a space robot with multi‐link flexible manipulators are developed. Using assumed modes approach to describe the flexible deformation, the dynamic model of the flexible space robotic system is derived with Lagrangian method to represent the system dynamic behaviors. Based on Lyapunov's direct method, the robust model‐free position control with noncollocated feedback is designed for position regulation of the space robot and vibration suppression of the flexible manipulators. The closed‐loop stability of the space robotic system can be guaranteed and the guideline of choosing noncollocated feedback is analyzed. The proposed control is easily implementable for flexible space robot with both uncertain complicated dynamic model and unknown system parameters, and all the control signals can be measured by sensors directly or obtained by a backward difference algorithm. Numerical simulations on a two‐link flexible space robot are provided to demonstrate the effectiveness of the proposed control.  相似文献   

4.
This paper deals with the smooth control design for Swing‐Stabilization Up of underactuated pendular robot. The considered system has, at least, two different no actuated links, one of them is pendular like elbow, the other one is prismatic and elastic. Thus, the control aim is to swing‐up and stabilize the underactuated system by using non‐switched control algorithm. To this, the control algorithm summarizes the concept of sub‐optimal control, the energy based control and the Kalman's canonical decomposition to unify the Swing‐Up and Stabilization of the considered underactuated system. In order to test the designed control algorithm, experimental results are presented for the non‐conventional rotatory elastic‐pendulum system.  相似文献   

5.
In this paper, a new design scheme of multiloop predictive self‐tuning PID controllers is proposed for multivariable systems. The proposed scheme firstly uses a static pre‐compensator as an approximately decoupling device, in order to roughly reduced the interaction terms of the controlled object. The static matrix pre‐compensator is adjusted by an on‐line estimator. Furthermore, by regarding the approximately decoupled system as a series of single‐input single‐output subsystems, a single‐input single‐output PID controller is designed for each subsystem. The PID parameters are calculated on‐line based on the relationship between the PID control and the generalized predictive control laws. The proposed scheme is numerically evaluated on a simulation example.  相似文献   

6.
两轮自平衡机器人以其机械结构简单,灵活高效的运动特性,具有广阔的应用前景.本文应用理论力学原理,分析并建立了两轮自平衡机器人的动力学模型.在此基础上,分别针对机器人系统的自平衡控制、速度控制设计了比例-积分-微分(PID)控制器.通过复频域和时域分析的方法,提出了一种简便的PID控制参数的整定方法.根据系统PID控制模...  相似文献   

7.
In this paper, two intelligent techniques for a two‐wheeled differential mobile robot are designed and presented: A smart PID optimized neural networks based controller (SNNPIDC) and a PD fuzzy logic controller (PDFLC). Basically, mobile robots are required to work and navigate under exigent circumstances where the environment is hostile, full of disturbances such as holes and stones. The robot navigation leads to an autonomous decision making to overcome an obstacle and/or to stop the engine to protect it. In fact, the actuators that drive the robot should in no way be damaged and should stop to change direction in case of insurmountable disturbances. In this context, two controllers are implemented and a comparative study is carried out to demonstrate the effectiveness of the proposed approaches. For the first one, neural networks are used to optimize the parameters of a PID controller and for the second a fuzzy inference system type Mamdani based controller is adopted. The goal is to implement control algorithms for safe robot navigation while avoiding damage to the motors. In these two control cases, the smart robot has to quickly perform tasks and adapt to changing environment conditions while ensuring stability and accuracy and must be autonomous with regards to decision making. Simulations results aren't done in real environments, but are obtained with the Matlab/Simulink environment in which holes and stones are modeled by different load torques and are applied as disturbances on the mobile robot environment. These simulation results and the robot performances are satisfactory and are compared to a PID controller in which parameters are tuned by the Ziegler–Nichols tuning method. The applied methods have proven to be highly robust.  相似文献   

8.
Position control of robot manipulators using a novel PID control configuration derived from modeling error compensation ideas is introduced. The PID control law stability depends only on the inertial parameters of the robot. A simple proof of semiglobal PID stabilization of robot manipulators is provided. It is shown that the performance of the inverse dynamics control can be recovered by the PID control in the high-gain limit. Simple tuning guidelines derived from the proposed PID control configuration and closed-loop stability analysis are presented.  相似文献   

9.
This paper presents a novel design of face tracking algorithm and visual state estimation for a mobile robot face tracking interaction control system. The advantage of this design is that it can track a user's face under several external uncertainties and estimate the system state without the knowledge about target's 3D motion‐model information. This feature is helpful for the development of a real‐time visual tracking control system. In order to overcome the change in skin color due to light variation, a real‐time face tracking algorithm is proposed based on an adaptive skin color search method. Moreover, in order to increase the robustness against colored observation noise, a new visual state estimator is designed by combining a Kalman filter with an echo state network‐based self‐tuning algorithm. The performance of this estimator design has been evaluated using computer simulation. Several experiments on a mobile robot validate the proposed control system. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

10.
This paper proposes a compensated PD‐like controller for delayed bilateral teleoperation of a manipulator robot. The scheme has a PD‐like remote controller, a damping into the master, and a compensation strategy. The proposed compensation removes part of potential energy of the user's command depending on the difference between the situation on the remote site and the situation as perceived by the human operator. In addition, the stability of the delayed teleoperation system is analyzed, and a comparison based on experiments is carried out in order to analyze the advantages of using the proposed compensation. Finally, results of a bilateral teleoperation including the proposed control scheme, where the master and slave exchange information by using a low‐cost connection of mobile Internet, are shown. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A novel time‐varying adaptive controller at the torque level is proposed to simultaneously solve the stabilization and the tracking problem of unicycle mobile robots with unknown dynamic parameters. The idea underlying the controller is intuitively simple: rather than switching between two different types of controllers according to the a priori knowledge of the reference velocities being persistently exciting or not, a new time‐varying signal is introduced to make the single controller capable of adaptively, smoothly, and gradually converting between stabilizer and tracker depending on the instantaneous and past information of the reference velocities. Our control development is based on Lyapunov's direct method and the backstepping technique. Adaptive control techniques are used to deal with parametric uncertainties. The outstanding feature of our controller is computationally simple due to its full use of the existing results on stabilization and tracking control for unicycle robots. With our approach, robots can globally follow a large class of paths including a straight line, a circle, a path approaching a set‐point, or just a set‐point using a single controller. Simulation results for a unicycle‐type mobile robot are provided to illustrate the effectiveness of the proposed controller.  相似文献   

12.
段星光  陈悦  于华涛 《机器人》2012,(2):129-136
为实现微创血管介入手术机器人对手术工具的精确定位和稳定把持,设计了其控制系统及相应零位定位装置.首先介绍了机器人系统组成和基于PMAC(可编程多轴控制器)的上下位机控制系统构架.同时,设计了5次插值运动规划算法和关节运动的三环PID控制算法,提高了机器人响应速度和稳定性.为了确定机器人运动初始位置,提出了以霍尔传感器为基础,结合电机运动信号的零位找寻方法和装置.实验结果表明,该零位定位装置定位稳定且准确.  相似文献   

13.
针对下肢康复训练机器人中步态控制机器人的变负载问题,提出了基于模糊自整定PID的控制策略.首先推导了负载力模型,设计了模糊自整定控制器,基于Matlab/Simulink/SimMechanics建立了被控对象的动力学模型及整个控制系统的仿真模型,仿真结果表明所提出的控制策略是可行的,较经典PID控制具有超调小,响应速度快,稳态精度高等优点,能较好地跟踪规划运动曲线,满足系统控制性能要求.  相似文献   

14.
In this paper, a new method is proposed to design the robust PID controllers for uncertain linear time‐invariant systems. We describe a simple and programming procedure for designing PID controllers by applying Kharitonov's theorem and LMI method. Such a controller enables the resulting control system to achieve robust stability as well as asymptotic tracking.  相似文献   

15.
In process industries, PID control schemes have been widely used due to their simple structures and easiness of comprehending the physical meanings of control parameters. However, the good control performance cannot be obtained by simply using PID controlschemes, since most processes are considered as nonlinear multivariable systems with mutual interactions. In this paper, a design method of multiloop PID controllers neural‐net based decoupler is proposed for nonlinear multivariable systems with mutual interactions. The proposed method consists of a decoupler given by the sum of a static decoupler and a neural‐net based decoupler, and multi‐loop PID controllers. Finally, the effectiveness of the proposed control scheme is evaluated on the simulation examples.  相似文献   

16.
针对非线性不确定机器人系统的轨迹跟踪控制问题,提出一种鲁棒自适应PID控制算法.该控制器由主控制器和监督控制器组成.主控制器以常规PID控制为基础,基于滑模控制思想设计PID参数的自适应律,根据误差实时修正PID参数.基于Lyapunov函数设计的监督控制器补偿自适应PID控制器与理想控制器之间的差异,使系统具有设定的H_∞的跟踪性能.最后,两关节机器人的仿真实验结果表明了算法的有效性.
Abstract:
A robust adaptive PID control algorithm is proposed for trajectory tracking of robot manipulators with nonlinear uncertainties.The controller is composed of a main controller and a supervisory controller.The main controller is designed based on the traditional PID controller.The parameters of the PID controller are updated online according to the system running errors with the adaptation law based on the sliding mode control.The supervisory controller is proposed to compensate the error between the adaptive PID controller and the ideal controller in the sense of the Lyapunov function with the specified H_∞ tracking performance.Finally, the simulation results based on a two-joint robot manipulator show the effectiveness of the presented controller.  相似文献   

17.
For systems with uncertainties, lots of PID parameter tuning methods have been proposed from the view point of the robust stability theory. However, the control performance becomes conservative using robust PID controllers. In this paper, a new two‐degree‐of‐freedom (2DOF) controller, which can improve the tracking properties, is proposed for nonlinear systems. According to the proposed method, the prefilter is designed as the PD compensator whose control parameters are tuned by the idea of a memory‐based modeling (MBM) method. Since the MBM method is a type of local modeling methods for nonlinear systems, PD parameters can be tuned adequately in an online manner corresponding to nonlinear properties. Finally, the effectiveness of the newly proposed control scheme is numerically evaluated on a simulation example. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

18.
This paper addresses the motion control in joint space of robot manipulators with friction described by the generalized LuGre friction model. The paper extends the nonadaptive version of the Slotine and Li's control system originally designed for friction‐free manipulators to the case where a friction observer is incorporated to deal with friction. This observer corresponds to an adaptation of the friction compensation scheme proposed in Canudas de Wit et al., in 1975, 1995. Passivity concepts are the fundamental tools invoked in this paper to analyze the closed‐loop system behavior which lead to the conclusion of global asymptotic joint position tracking. A major advantage of this framework is that it allows to develop in a separate way the control law from the observer design provided that each part satisfies some passivity properties.  相似文献   

19.
In this paper, a tracking controller based on a non-integer sliding surface is proposed for a magneto-electro-elastic (MEE) fluid-conveying microtube robot. The smart/adaptive MEE material enables us to control the robot with no need for external sensors and actuators. The micro-robot lateral motion is modeled by Euler–Bernoulli beam equations. The governing equation of the robot is derived using the constitutive equations of MEE materials and Maxwell's principle followed by Hamilton's variational method. Based on the extracted dynamic model, a novel non-integer order sliding mode controller is introduced to suppress the microtube vibration and to provide robust path following for the robot tip. This control approach is compatible with the parameter-varying nature of the robot dynamics. Theoretical analyses, based on Lyapunov theory, are also conducted to verify the stability of the closed-loop system. Comparative simulations are finally performed to show the efficiency of the proposed system in comparison with the conventional micro tubes made of smart materials and with an integer order sliding mode controller (SMC). The results demonstrate that the proposed robot properly meets the performance requirements in terms of vibration suppression and trajectory tracking, even in the presence of disturbances.  相似文献   

20.
Effective haptic performance in teleoperation control systems can be achieved by solving two major problems: the time‐delay in communication channels and the transparency of force control. The time‐delay in communication channels causes poor performance and even instability in a system. The transparency of force feedback is important for an operator to improve the performance of a given task. This article suggests a possible solution for these two problems through the implementation of a teleoperation control system between the master haptic device and the slave mobile robot. Regulation of the contact force in the slave mobile robot is achieved by introducing a position‐based impedance force control scheme in the slave robot. The time‐delay problem is addressed by forming a Smith predictor configuration in the teleoperation control environment. The configuration of the Smith predictor structure takes the time‐delay term out of the characteristic equation in order to make the system stable when the system model is given a priori. Since the Smith predictor is formulated from exact linear modeling, a neural network is employed to identify and model the slave robot system as a nonlinear model estimator. Simulation studies of several control schemes are performed. Experimental studies are conducted to verify the performance of the proposed control scheme by regulating the contact force of a mobile robot through the master haptic device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号