首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic-type charts are efficient tools for process monitoring. They are easy to design and implement in practice. The properties of these charts are usually evaluated under the assumption of known process parameters. This assumption is sometimes violated in practice, and process parameters have to be estimated from different phase I data sets collected by different practitioners. This fact causes the between-practitioners variability among the properties of the synthetic-type charts designed for each practitioner. In fact, the shape of the run length distribution of the synthetic-type charts changes with the mean shift size. As a good alternative, the median run length (MRL) metric is argued to evaluate the properties of different control charts. In this paper, the MRL is used as a measure of the synthetic X¯ chart's performance, and the conditional MRL properties of the synthetic X¯ chart with unknown process parameters are investigated. Both the average MRL ( AMRL) and the standard deviation of MRL ( ◂⋅▸SDMRL) are used together to investigate the chart's properties when the process parameters are unknown. If the available number of phase I samples is not large enough to reduce the variability of the in-control MRL values to an acceptable level, a bootstrap-type approach is suggested to adjust the control limits of the synthetic X¯ chart and to further prevent many unwanted lower in-control MRL values.  相似文献   

2.
A control chart is a simple yet powerful tool that is extensively adopted to monitor shifts in the process mean. In recent years, auxiliary‐information–based (AIB) control charts have received considerable attention as these control charts outperform their counterparts in monitoring changes in the process parameter(s). In this article, we integrate the conforming run length chart with the existing AIB double sampling (AIB DS) chart to propose an AIB synthetic DS chart for the process mean. The AIB synthetic DS chart also encompasses the existing synthetic DS chart. A detailed discussion on the construction, optimization, and evaluation of the run length profiles is provided for the proposed control chart. It is found that the optimal AIB synthetic DS chart significantly outperforms the existing AIB Shewhart, optimal AIB synthetic, and AIB DS charts in detecting various shifts in the process mean. An illustrative example is given to demonstrate the implementation of the existing and proposed AIB control charts.  相似文献   

3.
An efficient alternative to the S control chart for detecting shifts of small magnitude in the process variability using a moving average based on the sample standard deviation s statistic is proposed. Control limit factors are derived for the chart for different values of sample size and span w. The performance of the moving average S chart is compared to the S chart in terms of average run length. The result shows that the performance of moving average S chart for varying values of w outweigh those of the S chart for small and moderate shifts in process variability.  相似文献   

4.
Several modifications and enhancements to control charts in increasing the performance of small and moderate process shifts have been introduced in the quality control charting techniques. In this paper, a new hybrid control chart for monitoring process location is proposed by combining two homogeneously weighted moving average (HWMA) control charts. The hybrid homogeneously weighted moving average (HHWMA) statistic is derived using two smoothing constants λ1 and λ2 . The average run length (ARL) and the standard deviation of the run length (SDRL) values of the HHWMA control chart are obtained and compared with some existing control charts for monitoring small and moderate shifts in the process location. The results of study show that the HHWMA control chart outperforms the existing control charts in many situations. The application of the HHWMA chart is demonstrated using a simulated data.  相似文献   

5.
We propose a new multivariate CUSUM control chart, which is based on self adaption of its reference value according to the information from current process readings, to quickly detect the multivariate process mean shifts. By specifying the minimum magnitude of the process mean shift in terms of its non‐centrality parameter, our proposed control chart can achieve an overall performance for detecting a particular range of shifts. This adaptive feature of our method is based on two EWMA operators to estimate the current process mean level and make the detection at each step be approximately optimal. Moreover, we compare our chart with the conventional multivariate CUSUM chart. The advantages of our control chart detection for range shifts over the existing charts are greatly improved. The Markovian chain method, through which the average run length can be computed, is also presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A multivariate Shewhart and a multivariate exponentially weighted moving average control charts are types of multivariate control charts for monitoring the mean vector. For those control charts, a multivariate normal distribution is an important assumption that is used to describe a behavior of a set of quality characteristics of interest. This research explores the sensitivity of average run lengths and standard deviation of run lengths for the multivariate Shewhart and the multivariate exponentially weighted moving average control charts when the normality assumption is incorrect.  相似文献   

7.
A common assumption for most control charts is the fact that the process parameters are supposed to be known or accurately estimated from Phase I samples. But, in practice, this is not a realistic assumption and the process parameters are usually estimated from a very limited number of samples that, in addition, may contain some outliers. Recently, a median chart with estimated parameters has been proposed to overcome these issues and it has been investigated in terms of the unconditional Average Run Length (ARL). As this median chart with estimated parameters does not take the “Phase I between‐practitioners” variability into account, in this paper, we suggest to revisit it using the Standard Deviation of the ARL as a measure of performance. The results show that this Standard Deviation of the ARL–based median chart actually requires a much larger amount of Phase I data than previously recommended to sufficiently reduce the variation in the chart performance. Due to the practical limitation of the number of the Phase I data, the bootstrap method is recommended as a good alternative approach to define new dedicated control chart parameters.  相似文献   

8.
As a useful tool in statistical process control (SPC), the exponential control chart is more and more popular for monitoring high-quality processes. Considering both known and estimated parameter cases, the one-sided exponential cumulative sum (CUSUM) charts are studied in this paper through a Markov chain approach. Because the shape of the run length (RL ) distribution of the one-sided exponential CUSUM charts is skewed and it also changes with the mean shift size and the number of Phase I samples used to estimate the process parameter, the median run length (MRL ) is employed as a good alternative performance measure for the charts. The optimal design procedures based on MRL of the one-sided exponential CUSUM charts with known and estimated parameters are discussed. By comparing the MRL performance of the chart with known parameters with the one of the chart with estimated parameters, we investigate the effect of estimated process parameters on the properties of the chart. Finally, an application is illustrated to show the implementation of the chart.  相似文献   

9.
In the service and manufacturing industry, memory-type control charts are extensively applied for monitoring the production process. These types of charts have the ability to efficiently detect disturbances, especially of smaller amount, in the process mean and/or dispersion. Recently, a new homogeneously weighted moving average (HWMA) chart has been proposed for efficient monitoring of smaller shifts. In this study, we have proposed a new double HWMA (DHWMA) chart to monitor the changes in the process mean. The run length profile of the proposed DHWMA chart is evaluated and compared with some existing control charts. The outcomes reveal that the DHWMA chart shows better performance over its competitor charts. The effect of non-normality (in terms of robustness) and the estimation of the unknown parameters on the performance of the DHWMA chart are also investigated as a part of this study. Finally, a real-life industrial application is offered to demonstrate the proposal for practical considerations.  相似文献   

10.
Existing economic and economic-statistical designs require practitioners to specify the Mahalanobis Distance Shift Size (MDSS) as an exact value. However, practitioners may find it difficult to specify this distance. This article proposes the economic and economic-statistical designs of the Hotelling's T2 chart, where practitioners do not have to specify the MDSS. Adopting optimal design parameters based on the wrong MDSS results in a significant increase in cost. In comparison, adopting the optimal design parameters based on the proposed methodology results in a slight increase in cost. This article also studies the effects of different input parameters and statistical constraints.  相似文献   

11.
In recent years, the memory‐type control charts—exponentially weighted moving average (EWMA) and cumulative sum (CUSUM)—along with the adaptive and dual control‐charting structures have received considerable attention because of their excellent ability in providing an overall good detection over a range of mean‐shift sizes. These adaptive memory‐type control charts include the adaptive exponentially weighted moving average (AEWMA), dual CUSUM, and adaptive CUSUM charts. In this paper, we propose a new AEWMA chart for efficiently monitoring the process mean. The idea is to first design an unbiased estimator of the mean shift using the EWMA statistic and then adaptively update the smoothing constant of the EWMA chart. The run length profiles of the proposed AEWMA chart are computed using extensive Monte Carlo simulations. Based on a comprehensive comparative study, it turns out that the proposed AEWMA chart performs better than the existing AEWMA, adaptive CUSUM, dual CUSUM, and Shewhart‐CUSUM charts, in terms of offering more balanced protection against mean shifts of different sizes. An example is also used to explain the working of the existing and proposed control charts.  相似文献   

12.
The Shewhart X chart (or X chart) is widely used to monitor the mean of a quality characteristic x. This chart decides the process status based on the magnitude of the sample mean x and is effective for detecting large mean shifts. The synthetic chart is also a Shewhart type chart for monitoring the process mean, but it utilises the information about the time interval between two nonconforming samples. Here a sample is nonconforming if its x value falls beyond the predetermined warning limits. Unlike the X chart, the synthetic chart is more powerful to detect small shifts. The applications of the X and synthetic charts cover a wide variety of manufacturing processes and production lines, e.g., the monitoring of the mean values of the inside diameter of a piston-ring, the viscosity of aircraft paint, the resistivity of silicon wafers. This article proposes a combined scheme, the Syn-X chart, that comprises a synthetic chart and an X chart. The results of the performance studies show that the Syn-X chart always outperforms the individual X chart and synthetic chart under different conditions. It is more effective than the X chart and synthetic chart by 47% and 20%, respectively, over the wide range of mean shift values in different experiment runs.  相似文献   

13.
This paper proposes a parameter-free Kullback-Leibler information control chart for monitoring sustained shifts in the process mean of a normally distributed process in phase II. Two plotted statistics are provided. One is based on our backward empirical sequential test, the other is based on the maximum log-likelihood ratio change point method. These two achieve similar performances for the control chart. The performance of the proposed chart is compared with those of the cumulative sum chart, the exponentially weighted moving average chart, and the generalized likelihood ratio (GLR) chart. The results show that our proposed chart and the GLR chart have similar performances. Both can detect a wide range of shifts in the process mean, and neither requires design parameters other than the control limits. The proposed chart outperforms GLR when the size of the shift is below 1.24 standard deviations, while GLR outperforms the proposed chart when the size of the shift is above 1.24 standard deviations.  相似文献   

14.
An auxiliary information-based (AIB) maximum exponentially weighted moving average (MaxEWMA) chart has been proposed to simultaneously monitor both increases and decreases in the process mean and/or variability, called the AIB-MaxEWMA chart, which is superior to the existing MaxEWMA chart. In this paper, we propose the AIB maximum generally weighted moving average chart, called the AIB-MaxGWMA chart, to further enhance the sensitivity of the AIB-MaxEWMA chart. Numerical simulation studies indicate that the AIB-MaxGWMA chart is sensitive to small shifts in the process mean and/or variability. The performance of the AIB-MaxGWMA chart based on average run lengths (ARLs) also outperforms than its counterparts including AIB-MaxEWMA, MaxGWMA and MaxEWMA charts. An example is used to illustrate the efficiency of the proposed AIB-MaxGWMA chart in detecting small process shifts.  相似文献   

15.
In statistical process control, it is a common practice to increase the sensitivity of a control chart with the help of an efficient estimator of the underlying process parameter. In this paper, we consider an efficient estimator that requires information on several study variables along with one or more auxiliary variables when estimating the mean of a multivariate normally distributed process. Using this auxiliary‐information‐based (AIB) process mean estimator, we propose new multivariate EWMA (MEWMA), double MEWMA (DMEWMA), and multivariate CUSUM (MCUSUM) charts for monitoring the process mean, denoted by the AIB‐MEWMA, AIB‐DMEWMA, and AIB‐MCUSUM charts, respectively. The run length characteristics of the proposed multivariate charts are computed using Monte Carlo simulations. The proposed charts are compared with their existing counterparts in terms of the run length characteristics. It turns out that the AIB‐MEWMA, AIB‐DMEWMA, and AIB‐MCUSUM charts are uniformly and substantially better than the MEWMA, DMEWMA, and MCUSUM charts, respectively, when detecting different shifts in the process mean. A real dataset is considered to explain the implementation of the proposed and existing multivariate control charts.  相似文献   

16.
When using control charts to monitor manufacturing processes, the exponentially weighted moving average (EWMA) control chart is useful for detecting persistent shifts in the process parameter. This paper proposes enhancements to the applications of the EWMA control chart for those scenarios where the exact measurement of process units is difficult and expensive, but the visual ordering of the units can be done easily. The proposed charts use an auxiliary variable that is correlated with the process variable to provide efficient monitoring of shifts in the process mean and are formulated based on ranked set sampling (RSS) and median RSS schemes (MRSS). Simulation results showed that the proposed charting schemes are more efficient in detecting a shift in the process mean than the classical EWMA control chart and its modification. An example is provided to show the application of the proposed charts using a simulated benchmark process: the continuous stirred tank reactor (CSTR).  相似文献   

17.
Recent studies show that the Shewhart median chart is widely used for detecting shifts in a process, but it is often rather inefficient in detecting small or moderate process shifts. In order to overcome this problem, a Synthetic chart can be used. This chart outperforms the Shewhart‐type chart because it uses the information about the time interval between two consecutive nonconforming samples. In this paper, we propose and study the Phase II Synthetic median control chart. A Markov chain methodology is used to evaluate the statistical performance of the proposed chart. Moreover, its performance is investigated in the presence of measurement errors, which are modelled by a linear covariate error model. We provide the results of an extensive numerical analysis with several tables and figures in order to show the statistical performance of the investigated chart, for both cases of measurement errors and no measurement errors. Finally, an example illustrates the use of the Synthetic median chart.  相似文献   

18.
19.
In some statistical process control (SPC) applications, it is assumed that a quality characteristic or a vector of quality characteristics of interest follows a univariate or multivariate normal distribution, respectively. However, in certain applications this assumption may fail to hold and could lead to misleading results. In this paper, we study the effect of non‐normality when the quality of a process or product is characterized by a linear profile. Skewed and heavy‐tailed symmetric non‐normal distributions are used to evaluate the non‐normality effect numerically. The results reveal that the method proposed by Kimtextitet al. (J. Qual. Technol. 2003; 35 :317–328) can be designed to be robust to non‐normality for both highly skewed and heavy‐tailed distributions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The homogeneously weighted moving average (HWMA) control chart is famous to identify small deviations in the process mean. The plotting statistic of the HWMA chart assigns equal weight among the previous samples as compared to the plotting statistic of the exponentially weighted moving average chart. We propose a new HWMA chart that uses the plotting statistic of the cumulative sum chart. The run length performance of the proposed chart is measured in terms of the average, the standard deviation, some percentile points, and compared with some existing counterparts' charts. The comparison shows that the proposed chart performs superior to their existing counterparts. An application based on a real-life dataset is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号