首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Autocorrelation or nonstationarity may seriously impact the performance of conventional Hotelling's T2 charts. We suggest modeling processes with multivariate autoregressive integrated moving average time series models and propose two model‐based monitoring charts. One monitors the predicted value and provides information about the need for mean adjustments. The other is a Hotelling's T2 control chart applied to the residuals. The average run length performance of the residual‐based Hotelling's T2 chart is compared with the observed data‐based Hotelling's T2 chart for a group of first‐order vector autoregressive models. We show that the new chart in most cases performs well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, an attribute‐variable control chart, namely, M‐ATTRIVAR, is introduced to monitor possible shifts in a vector of means. The monitoring starts using an attribute chart (classifying the units as approved or not using a gauge) and continues in such a way until a warning signal is given, shifting the control to a variable chart for the next sampling. If the variable chart does not confirm the warning, the monitoring returns to an attribute control. Otherwise, the monitoring remains with the variable chart. Whenever any of the charts (attribute or variable) signals an alarm, the control scheme triggers an alarm. The main advantage of this new proposal is the possibility of judging the state of the process only by the attribute chart most of the time (normally more economical and faster). The performance of the M‐ATTRIVAR control chart is compared versus the main competitor (T2 control chart) in terms of performance detection (out‐of‐control average run length) but also economically (average sampling cost). The M‐ATTRIVAR is always cheaper than T2, and in many scenarios, it detects quicker process shifts than the T2 control chart. A numerical example illustrates a practical situation.  相似文献   

3.
Hotelling's T2 chart is a popular tool for monitoring statistical process control. However, this chart is sensitive in the presence of outliers. To alleviate the problem, this paper proposed alternative Hotelling's T2 charts for individual observations using robust location and scale matrix instead of the usual mean vector and the covariance matrix, respectively. The usual mean vector in the Hotelling T2 chart is replaced by the winsorized modified one‐step M‐estimator (MOM) whereas the usual covariance matrix is replaced by the winsorized covariance matrix. MOM empirically trims the data based on the shape of the data distribution. This study also investigated on the different trimming criteria used in MOM. Two robust scale estimators with highest breakdown point, namely Sn and Tn were selected to suit the criteria. The upper control limits for the proposed robust charts were calculated based on simulated data. The performance of each control chart is based on the false alarm and the probability of outlier's detection. In general, the performance of an alternative robust Hotelling's T2 charts is better than the performance of the traditional Hotelling's T2 chart. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
At the origination of the Shewhart control chart, it was assumed that the process parameters were known. The in‐control Average Run Length (ARL) and the probability of having a false alarm (P) were introduced as metrics to indicate the in‐control performance. These two metrics are related when the process data are i.i.d. normally distributed: the ARL equals 1/P. When the process parameters are unknown and have to be estimated, a similar relation holds for each estimated control chart, but the relation between the expected ARL (the average of the ARLs of all possible estimated charts) and the expectedP is different. Control charts based on estimates are often designed such that the in‐control ARL equals a predefined value. This paper shows that the expected in‐control ARL is a less suitable design criterion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The average run length (ARL) is usually used as a sole measure of performance of a multivariate control chart. The Hotelling's T2, multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) charts are commonly optimally designed based on the ARL. Similar to the case of univariate quality control, in multivariate quality control, the shape of the run length distribution changes in accordance to the magnitude of the shift in the mean vector, from highly skewed when the process is in‐control to nearly symmetric for large shifts. Because the shape of the run length distribution changes with the magnitude of the shift in the mean vector, the median run length (MRL) provides additional and more meaningful information about the in‐control and out‐of‐control performances of multivariate charts, not given by the ARL. This paper provides a procedure for optimal designs of the multivariate synthetic T2 chart for the process mean, based on MRL, for both the zero and steady‐state modes. Two Mathematica programs, each for the zero state and steady‐state modes are given for a quick computation of the optimal parameters of the synthetic T2 chart, designed based on MRL. These optimal parameters are provided in the paper, for the bivariate case with sample sizes, nin{4, 7, 10}. The MRL performances of the synthetic T2, MEWMA and Hotelling's T2 charts are also compared. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Statistical process control consists of tools and techniques that are useful for improving a process or ensuring that a process is in a stable and satisfactory state. In many modern industrial applications, it is critically important to simultaneously monitor two or more correlated process quality variables, thus necessitating the development of multivariate statistical process control (MSPC) as an important area of research for the new century. Nevertheless, the existing MSPC research is mostly based on the assumption that the process data follow a multinormal distribution or a known distribution. However, it is well recognized that in many applications the underlying process distribution is unknown. In practice, among a set of correlated variables to be monitored, there is oftentimes a subset of variables that are easy and/or inexpensive to measure, whereas the remaining variables are difficult and/or expensive to measure but contain information that may help more quickly detect a shift in the process mean. We are motivated to develop a Phase II control chart to monitor variable dimension (VD) mean vector for unknown multivariate processes. The proposed chart is based on the exponentially weighted moving average (EWMA) of a depth-based statistic. The proposed chart is shown to lead to faster detection of mean shifts than the existing VDT2 and VD EWMAT2 charts studied in Aparisi et al. and Epprecht et al., respectively.  相似文献   

7.
8.
One of the basic assumptions for traditional univariate and multivariate control charts is that the data are independent in time. For the latter, in many cases, the data are serially dependent (autocorrelated) and cross‐correlated because of, for example, frequent sampling and process dynamics. It is well known that the autocorrelation affects the false alarm rate and the shift‐detection ability of the traditional univariate control charts. However, how the false alarm rate and the shift‐detection ability of the Hotelling T2 control chart are affected by various autocorrelation and cross‐correlation structures for different magnitudes of shifts in the process mean is not fully explored in the literature. In this article, the performance of the Hotelling T2 control chart for different shift sizes and various autocorrelation and cross‐correlation structures are compared based on the average run length using simulated data. Three different approaches in constructing the Hotelling T2 chart are studied for two different estimates of the covariance matrix: (i) ignoring the autocorrelation and using the raw data with theoretical upper control limits; (ii) ignoring the autocorrelation and using the raw data with adjusted control limits calculated through Monte Carlo simulations; and (iii) constructing the control chart for the residuals from a multivariate time series model fitted to the raw data. To limit the complexity, we use a first‐order vector autoregressive process and focus mainly on bivariate data. © 2014 The Authors. Quality and Reliability Engineering International Published by John Wiley & Sons Ltd.  相似文献   

9.
The primary objective of multivariate statistical process control is to monitor the related process quality characteristics over time and identify the assignable causes affecting the process using multivariate control charts. When an out‐of‐control signal is obtained from the chart, it is imperative to be able to detect the component variables that have gone out‐of‐control. In this paper we propose a new charting procedure for T2, multivariate exponentially weighted moving average and multivariate cumulative sum control charts. The proposed charts will facilitate in identification of the source of out‐of‐control signal and are simple, economical and easier to implement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A statistical process control framework is proposed to monitor non-linear profiles. The proposed methodology aims at identifying mean shifts or ‘shape changes’ in a profile. Discrete wavelet transformation (DWT) is applied to separate variation or noise from profile contours. B-splines are adopted to generate critical points to define the shape of a profile. The proposed method is innovative in that users can divide a profile into multiple segments to be monitored simultaneously. The high dimensionality problem that hinders the implementation of multivariate control charts can be solved by this framework. The distance difference statistic for each segment provides diagnostic information when the process of interest is out of control. These proposed statistics form a vector to be fed into any multivariate control chart such as the Hotelling T 2 control chart. A decomposition method can also be applied on the T 2 statistics when an out-of-control profile is detected. A simulation study applied to a forging process is conducted to demonstrate the property of the proposed method. The proposed method is capable of detecting profile shifts and identifying the exact location of problematic segments.  相似文献   

11.
The CRL (Conforming Run Length) type control charts have attracted increasing interest recently for attribute Statistical Process Control (SPC). The two most promising charts of this type are identified as the CRL‐CUSUM chart and the SCRL (Sum of CRLs) chart. This article compares the operating characteristics of these two charts in a comprehensive manner. The general findings reveal that the CRL‐CUSUM chart excels the SCRL chart in detecting downward (decreasing) fraction nonconforming (p) shifts and large‐scale upward (increasing) p shifts. However, the SCRL chart is superior to the CRL‐CUSUM chart in detecting the small and moderate scale upward p shifts, especially when the normal p value is small. The information acquired in this study will provide Quality Assurance (QA) engineers with useful guidance for selecting and applying the CRL‐type control charts. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
With the development of the sensor network and manufacturing technology, multivariate processes face a new challenge of high‐dimensional data. However, traditional statistical methods based on small‐ or medium‐sized samples such as T2 monitoring statistics may not be suitable because of the “curse of dimensionality” problem. To overcome this shortcoming, some control charts based on the variable‐selection (VS) algorithms using penalized likelihood have been suggested for process monitoring and fault diagnosis. Although there has been much effort to improve VS‐based control charts, there is usually a common distributional assumption that in‐control observations should follow a single multivariate Gaussian distribution. However, in current manufacturing processes, processes can have multimodal properties. To handle the high‐dimensionality and multimodality, in this study, a VS‐based control chart with a Gaussian mixture model (GMM) is proposed. We extend the VS‐based control chart framework to the process with multimodal distributions, so that the high‐dimensionality and multimodal information in the process can be better considered.  相似文献   

13.
Statistical process control techniques have been widely used to improve processes by reducing variations and defects. In the present paper, we propose a multivariate control chart technique based on a clustering algorithm that can effectively handle a situation in which the distribution of in-control observations is inhomogeneous. A simulation study was conducted to examine the characteristics of the proposed control chart and to compare them with Hotelling’s T 2 multivariate control charts that are widely used in real-world processes. Moreover, an experiment with real data from the thin film transistor liquid crystal display (TFT-LCD) manufacturing process demonstrated the effectiveness and accuracy of the proposed control chart.  相似文献   

14.
High‐dimensional applications pose a significant challenge to the capability of conventional statistical process control techniques in detecting abnormal changes in process parameters. These techniques fail to recognize out‐of‐control signals and locate the root causes of faults especially when small shifts occur in high‐dimensional variables under the sparsity assumption of process mean changes. In this paper, we propose a variable selection‐based multivariate cumulative sum (VS‐MCUSUM) chart for enhancing sensitivity to out‐of‐control conditions in high‐dimensional processes. While other existing charts with variable selection techniques tend to show weak performances in detecting small shifts in process parameters due to the misidentification of the ‘faulty’ parameters, the proposed chart performs well for small process shifts in identifying the parameters. The performance of the VS‐MCUSUM chart under different combinations of design parameters is compared with the conventional MCUSUM and the VS‐multivariate exponentially weighted moving average control charts. Finally, a case study is presented as a real‐life example to illustrate the operational procedures of the proposed chart. Both the simulation and numerical studies show the superior performance of the proposed chart in detecting mean shift in multivariate processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Short production runs are common in enterprises that require a high degree of flexibility and variety in manufacturing processes. To date, past research on short production runs has little focus on the multivariate control charts. In view of this, fixed sample size (FSS) and variable sample size (VSS) Hotelling's T2 charts are designed to monitor the process mean when the production horizon is finite. Optimal parameters to minimize the out‐of‐control (1) truncated average run length (TARL) and (2) expected TARL (ETARL) are provided such that the in‐control TARL is equal to the number of inspections (say I). The numerical study considers the run length performances of the FSS and VSS T2 short‐run charts for both known and unknown shift sizes. The VSS T2 short‐run chart performs well in swiftly detecting various mean shifts in comparison with the FSS T2 short‐run chart. Additionally, the VSS T2 short‐run chart is superior to the FSS T2 short‐run chart, in terms of the truncated standard deviation of the run length, expected truncated standard deviation of the run length, probability that the chart signals an alarm within the I inspections, ie, P(I) and expected P(I). A case study on the impurity profile of a crystalline drug substance illustrates the implementation of the VSS T2 short‐run chart.  相似文献   

16.
Exponentially weighted moving average (EWMA) control charts are well-established devices for monitoring process stability. Typically, control charts are evaluated by considering their Average Run Length (ARL), that is the expected number of observations or samples until the chart signals. Because of the limitations of an average, various papers also dealt with the run length distribution and quantiles. Going beyond these papers, we develop algorithms for and evaluate the quantile performance of EWMA control charts with variance adjusted control limits and with fast initial response features, of EWMA charts based on the sample variance, and of EWMA charts simultaneously monitoring mean and variance. Additionally, for the mean charts we consider medium, late and very late process changes and their impact on appropriately conditioned run length quantiles. It is demonstrated that considering run length quantiles can protect from constructing distorted EWMA designs while optimising their zero-state ARL performance. The implementation of all the considered measures in the R package ‘spc’ allows any control chart user to consider EWMA schemes from the run length quantile prospective in an easy way.  相似文献   

17.
In multivariate statistical process control (MSPC), regular multivariate control charts (eg, T2) are shown to be effective in detecting out‐of‐control signals based upon an overall statistic. But these charts do not relieve the need for multivariate process pattern recognition (MPPR). MPPR would be very useful for quality operators to locate the assignable causes that give rise to out‐of‐control situation in multivariate manufacturing process. Deep learning has been widely applied and obtained many successes in image and visual analysis. This paper presents an effective and reliable deep learning method known as stacked denoising autoencoder (SDAE) for MPPR in manufacturing processes. This study will concentrate on developing a SDAE model to learn effective discriminative features from the process signals through deep network architectures. Feature visualization is performed to explicitly present feature representations of the proposed SDAE model. The experimental results illustrate that the proposed SDAE model is capable of implementing detection and recognition of various process patterns in complicated multivariate processes. Analysis from this study provides the guideline in developing deep learning‐based MSPC systems.  相似文献   

18.
In this article, two adaptive multivariate charts, which combine the double sampling (DS) and variable sampling interval (VSI) features, called the adaptive multivariate double sampling variable sampling interval T2 (AMDSVSI T2) and the adaptive multivariate double sampling variable sampling interval combined T2 (AMDSVSIC T2) charts, are proposed. The real purpose of using the proposed charts is to provide flexibility by enabling the sampling interval length of the DS T2 chart to be varied so that the chart's sensitivity can be enhanced. The fundamental difference between the two proposed charts is that when a second sample is taken, the AMDSVSI T2 chart uses the information of the combined sample mean vectors while the AMDSVSIC T2 chart uses the information of the combined T2 statistics, in deciding about the process status. This research is motivated by existing combined DS and VSI charts in the literature, which show convincing performance improvement over the standard DS chart. Consequently, it is believed that adopting this existing approach in the multivariate case will enable superior multivariate DS charts to be proposed. Numerical results show that the proposed charts outperform the existing standard T2 and other adaptive multivariate charts, in detecting shifts in the mean vector, for the zero‐state and steady‐state cases. The performances of both charts when the shift sizes in the mean vector are unknown are also measured. The application of the AMDSVSI T2 chart is illustrated with an example.  相似文献   

19.
The S2 chart has been known as a powerful tool to monitor the variability of the normal process. When the variance of the process is unknown, it needs to be estimated by Phase I samples. It is well known that there are serious effects of parameter estimation on the performance of the S2 chart based on known parameter assumption. If the effects of parameter estimation are not considered, it can lead to an increase in the number of false alarms and a reduction in the ability of the chart to detect process changes except for very small shifts in the variance. Based on the criterion of average run length (ARL) unbiased, a S2 control chart is developed when the in‐control variance is estimated. The performance of the proposed control chart is also evaluated in terms of the ARL and standard deviation of the run length. Finally, an example is used to illustrate the proposed control chart. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
One of the most widely used multivariate control charts is the Hotelling T2. In order to construct a Hotelling T2 control chart, the mean vector (μ) and the variance–covariance matrix (Σ) must be first estimated. The classical estimators of μ and Σ are usually used to design Hotelling T2 control chart. The classical estimators are sensitive to the presence of outliers. One way to deal with outliers is to use robust estimators. In this study, a robust T2 control chart is proposed. The mean vector is obtained from the sample median. The median absolute deviation and the comedian are used as the estimates of the elements of the variance–covariance matrix. The proposed robust estimators of the mean vector and the variance–covariance matrix are compared with the sample mean vector and the sample variance–covariance matrix, and the M estimator of these parameters, through efficiency and robustness measures. The performances of the proposed robust T2 control chart and the classical and the M estimators are also compared by means of average run length. Simulation results reveal that the proposed robust T2 control chart has much better performance than the traditional Hotelling T2 and similar performance to the M estimator in detecting shifts in process mean vector. Use of other robust estimators to estimate the process parameters is an area for further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号