首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large wood (LW) is a key component of stream habitats, and degraded streams often contain little wood relative to less‐impacted ones. Habitat rehabilitation and erosion control techniques that emphasize addition of natural wood in the form of individual elements or structures are increasingly popular. However, the efficacy of wood addition, especially in physically unstable, warmwater systems is not well established. The effects of habitat rehabilitation of Little Topashaw Creek, a sinuous, sand‐bed stream draining 37 km2 in northwest Mississippi are described herein. The rehabilitation project consisted of placing 72 LW structures along eroding concave banks of a 2‐km reach and planting 4000 willow cuttings in sandbars opposite or adjacent to the LW structures. Response was measured by monitoring flow, channel geometry, physical aquatic habitat and fish populations in treated and untreated reaches for 2 years before and 4 years after rehabilitation. Initially, LW structures reduced high flow velocities at concave bank toes. Progressive failure of the LW structures and renewed erosion began during the second year after rehabilitation, with only 64% of the structures and about 10% of the willow plantings surviving for 3 years. Accordingly, long‐term changes in physical habitat attributable to rehabilitation were limited to an increase in LW density. Fish biomass increased in the treated reach, and species richness approximately doubled in all reaches after rehabilitation, suggesting the occurrence of some sort of stressful event prior to our study. Fish community composition shifted toward one typical of a lightly degraded reference site, but similar shifts occurred in the untreated reaches downstream, which had relatively high levels of naturally occurring LW. Large wood is a key component of sand‐bed stream ecosystems, but LW addition for rehabilitation should be limited to sites with more stable beds and conditions that foster rapid woody plant colonization of sediment deposits. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

2.
Chum salmon Oncorhynchus keta that spawn in main‐stem habitats below Bonneville Dam on the Columbia River, USA, are periodically subjected to elevated discharges that may alter spawning behaviour. We investigated behavioural responses of spawning chum salmon to increased water velocities associated with experimental increases in tailwater elevation using acoustic telemetry and a dual‐frequency identification sonar. Chum salmon primarily remained near their redds at base tailwater elevations (3.5 m above mean sea level), but displayed different movement and behavioural responses as elevations were increased to either 4.1 or 4.7 m for 8‐h periods. When velocities remained suitable (<0.8 m s?1) during elevated‐tailwater tests, female chum salmon remained near their redds but exhibited reduced digging activity as water velocities increased. However, when velocities exceeded 0.8 m s?1, the females that remained on their redds exhibited increased swimming activity and digging virtually ceased. Female and male chum salmon that left their redds when velocities became unsuitable moved mean distances ranging from 32 to 58 m to occupy suitable velocities, but returned to their redds after tailwaters returned to base levels. Spawning events (i.e. egg deposition) were observed for five of nine pairs of chum salmon following tests indicating any disruptions to normal behaviour caused by elevated tailwaters were likely temporary. We believe a chum salmon's decision to either remain on, or leave, its redd during periods of unsuitably high water velocities reflects time invested in the redd and the associated energetic costs it is willing to incur. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

3.
High‐resolution velocity profile measurements were taken over a series of riffles on a gravel‐bed stream using a Pulse Coherent Acoustic Doppler Profiler (PCADP) to quantify the fluid structure of riffles and nests (redds) where brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) spawned. Velocity profiles were obtained on a highly discretized planometric scale ranging between 20 and 40 cm grid spacings, with vertical observations occurring every 1.6 cm. From the velocity profiles, between 15 000 and 38 000 velocity measurements were obtained over each riffle on any given day of measurement. Velocity profiles were converted to streamwise velocity magnitude, flow depth, Reynolds number, Froude number, shear stress, vertical velocity components and turbulent kinetic energy per unit area to evaluate the spatial structure of the riffles and the spatial structure of redds (pits and tailspills) relative to the surrounding riffle structure. Semi‐variograms were employed to evaluate the persistence of the fluid structure based upon the metrics evaluated. Results showed that discrete velocity observations poorly described the spatial structure of the flow system and poorly correlated with redd locations. Reynolds number analysis identified a relatively consistent fluid property for distances typically 2–3 times the longitudinal length of redds. Turbulent kinetic energy per unit area consistently identified common regions on all riffles studied that corresponded with the location selections for redds where flow was identified as essentially uni‐directional. Froude number was found to be insensitive in predicting the fluid spatial structure in wadeable flow depths and relating it to the fluid structure of redds. Results indicated that a series of metrics at varying spatial scales of turbulence may be necessary to understand the spatial complexity of redd selection. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The relationships between valley and channel morphology, spawning substrate quality (content of fine sediment < 2 mm) and the selection of spawning sites by Atlantic salmon (Salmo salar) were investigated along 45 km of two semi‐alluvial, valley‐confined rivers in the Gaspé Peninsula, Canada. Linear and logistic regressions confirm that Atlantic salmon prefer spawning at riffles providing good rather than mediocre or poor spawning substrate, as defined by the percentage sand and the Sand Index of Peterson and Metcalfe. However, exceptionally large concentrations of redds were observed on the few riffles located at island heads, with sub‐optimal substrate quality. This observation suggests that, in addition to content of fine material in the substrate, the morphology of spawning reaches may be a significant factor controlling the intensity of inter‐gravel flow through redds and the consequent selection of spawning sites. In the study systems, the quality of spawning substrate was controlled by ‘large‐scale’ geomorphic attributes at the scale of valley segments (1–5 km here): segments located within a wide valley were actively meandering, had higher sinuosity and bank erosion rates, generally lower shear stresses and presented somewhat higher sand content than segments confined by a narrow valley. Although sand contents were significantly higher, laterally unstable segments in wide valleys still harboured good to excellent spawning substrate overall. The study data do not allow the roles of variations in levels of riffle‐zone shear stress to be distinguished from those of cut bank fines input, to explain the observed inter‐segment association between valley width and riffle fines content. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
In a restored, third‐order stream in northern Nova Scotia, Canada, we used redd counts over 12 years to examine the influence of beaver dams and the timing and intensity of autumn rains on spawning activity of Atlantic salmon. Most beaver dams in most years had no detectable effect on the distribution of spawning redds, but in 2004 the density of redds downstream from a three‐dam complex was significantly greater than that above, suggesting the dams were a barrier to many fish. A second complex of dams blocked salmon passage completely in 2003 and 2004 until they were notched to provide access upstream. The length of stream used by salmon for spawning was linearly correlated with total precipitation in the basin in October plus November (R2 = 0.60), to a ceiling of 325 mm, above which the fish had access to the entire brook, if beaver dams were notched. Number of redds in the whole brook was strongly correlated (R2 = 0.94) with the coefficient of variation (CV) of daily rainfall in October, but only for 7 of 11 years. This relationship disappeared when the impassable beaver dam complex failed in 2005, allowing salmon free access to 4 km of the upper brook. Variation in rainfall, and hence discharge, in this flashy brook evidently influences migration and spawning of Atlantic salmon in conjunction with channel blocking by beaver dams. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
High‐resolution velocity measurements were taken over a series of redds on a gravel‐bed stream using a Pulse Coherent Acoustic Doppler Profiler (PCADP) to quantify the hydrodynamics of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) redds. On redds studied, over 4500 velocity measurements per redd were acquired per day to quantify the flow velocity, flow depth and related fluid mechanics metrics of Reynolds numbers, Froude numbers and turbulent kinetic energy per unit area. Results showed that velocity and Froude numbers varied widely at the redd scale, but consistently showed higher velocities and Froude numbers over the tailspill regions relative to the surrounding study limits. Results of Reynolds numbers calculations showed no apparent correlations to spawning location preference and redd structure. Turbulent kinetic energy per unit area consistently demonstrated a strong correlation with redd locations. The metric maintained low values (i.e. unidirectional flow with little turbulence) where all redds and attempted redds were observed. The study also demonstrates that a number of hydraulic metrics and several spatial scales will likely be necessary to understand any inherent relationship between river hydraulics and redd placement. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents results from a novel technique allowing continuous monitoring through multiple storm events of interstitial flow in salmonid redds. Previous studies have shown that long‐term increases in fine sediment inputs into rivers can silt up spawning beds, reduce intergravel flow and threaten egg survival. Not enough is known, however, about the temporal and spatial scales of the physical processes affecting spawning habitat. The short‐term sensitivity of intergravel flow through salmon nests to low‐intensity sediment transport events has not been documented. Furthermore, it is unclear if the egg pocket flow vital to incubation is principally controlled by the hydraulic conductivity of the redd patch or by that, generally lower, of the ambient riffle substrate. The purpose of this study was to determine if individual runoff events could affect intergravel flow in salmon nests and to investigate the sensitivity of interstitial flow to the fines content and conductivity of the redd patch. During the summer and autumn of 2001, a new intergravel velocity sensor based on the hot wire principle made it possible to continuously monitor, over five months, interstitial velocities in artificial redds in four tributaries of the Cascapedia River, Quebec. Fifteen low and moderate intensity runoff events (up to 50% bankfull) were monitored. Data were obtained for each storm on suspended sediment transport as well as sand infiltration rates in sediment collectors emplaced in redd zones. It was found that redd interstitial velocities were reduced whenever a runoff event deposited more than 7 kg/m2 of sands in infiltration traps. In addition, redd interstitial velocities were reduced four out of the five times that the event‐integrated suspended sediment dose exceeded 7 mg l?1 day (dose is defined as the area under the concentration time curve). In the study conditions, where ambient riffle sediment has relatively moderate permeability and localized groundwater upwelling is negligible, our data suggest that significant intergravel flow (0.1–0.6 mm/s) can be triggered through 2 m long redd patches, in response to the redd‐scale water surface gradient and the relatively higher conductivity of the redd patch, after spawner activity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Anadromous salmonid diversity and abundance worldwide have been adversely impacted by anthropogenic forces, and millions of dollars are spent each year on stream habitat restoration and enhancement. However, there is a paucity of data comparing site use by salmonids before and after enhancement implementation, and few studies examine the specific environmental conditions that determine whether salmonids utilize an enhanced site. This study examines the use of gravel augmentation to improve spawning site utilization by Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) on the Lower American River, California, USA. Spawning increased across all augmentation sites for both species, although there were species‐specific and year‐specific differences in the degree to which a site was utilized and in the spatial distribution of redds in relation to substrate size, habitat features and other redds. There were also differences in redd architecture across sites that were related to differences in gravel size. This study illustrates that gravel augmentation projects can enhance spawning habitat for salmonids where spawning beds have degraded but that species‐specific and site‐specific attributes and gravel size can influence the relative effectiveness of a project. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds‐of‐thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3‐year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty‐two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two‐dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post‐breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

10.
Non-native migratory salmonids ascend tributaries to spawn in all the Great Lakes. In Lake Ontario, these species include Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), steelhead (O. mykiss), and brown trout (Salmo trutta). Although successful natural reproduction has been documented for many of these species, little research has been conducted on their spawning habitat. We examined the spawning habitat of these four species in the Salmon River, New York. Differences in fish size among the species were significantly correlated with spawning site selection. In the Salmon River, the larger species spawned in deeper areas with larger size substrate and made the largest redds. Discriminant function analysis correctly classified redds by species 64–100% of the time. The size of substrate materials below Lighthouse Hill Dam is within the preferred ranges for spawning for these four species indicating that river armoring has not negatively impacted salmonid production. Intra-specific and inter-specific competition for spawning sites may influence redd site selection for smaller salmonids and could be an impediment for Atlantic salmon (S. salar) restoration.  相似文献   

11.
By impeding migration and degrading habitat downstream, dam construction has caused population declines in many migratory fish populations. As part of the landlocked Atlantic salmon (Salmo salar) restoration program in Lake Champlain, the Willsboro Dam was removed from the Boquet River, NY in 2015 providing an opportunity to study the effects of dam removal on spawning habitat quality and availability. Spawning habitat surveys were conducted downstream of the dam site in 2014, 2016 and 2017, and in historical spawning grounds upstream in 2016 and 2017. The habitat used was characterized by measuring depth, water velocity, and substrate size at each redd. Mean habitat use did not differ between upstream and downstream sites for any variables in 2016 and only differed for depth in 2017. However, the variance in depth and substrate used for spawning were lower at the upstream site in 2016, likely due to an abundance of habitat. In the downstream site, the mean and variance in depth at redds decreased after dam removal as did the variance in substrate size, increasing the habitat suitability of redds. When compared to literature data, habitat used upstream of the former dam was of medium quality in both 2016 and 2017, and improved downstream from low to medium quality in both column velocity and substrate size after dam removal. This study illustrates that positive shifts in the quality of habitat used can occur rapidly following dam removal by allowing access to suitable spawning habitat upstream and improving habitat downstream.  相似文献   

12.
Nest (redd) construction by female salmonids involves sequences of pit excavation and filling that winnow fines, loosen grains, and moves sediment downstream into a tailspill mound shaped like a dune. Prior research suggests that such bioturbation may destabilize streambeds by reducing friction between grains and converging flow that elevates shear stress on tailspills. Bed stability may alternatively be enhanced by form drag from redds that lowers basal shear stress, an effect that varies with the proportion of the bed that is occupied by redds (P). I used simulated redds and water‐worked (“unspawned”) beds in a laboratory flume to evaluate these competing influences on critical conditions and bedload transport in experiments with P = 0.11 (1 redd), 0.29 (2 redds), and 0.38 (3 redds). Results from competence (largest grain) and reference transport rate estimates of Shields stress indicate that particle entrainment inversely related to P. Bedload transport rates also increased as exponential functions of P and the boundary shear stress that exceeded critical conditions. Therefore, redd form drag did not overcome the destabilizing effects of redd construction. Instead, grain mobility and bedload transport increased with P because larger bed areas were composed of relatively loose grains and redd topography that experiences elevated shear stresses, as suggested in prior research. By winnowing fines and increasing bed surface mobility that exposes small particles in subsurface areas to flow, bioturbation by salmon can mitigate fine sedimentation of streambeds, which suggests an active role for salmon in restoring fish habitat in streams.  相似文献   

13.
Hydrochemical changes were monitored in a simulated, sea run salmon redd in a small agricultural stream in northeast Scotland following the 1998–1999 spawning season. Immediately after redd construction, the hydrochemical characteristics of hyporheic water, at depths of 0.1 m and 0.3 m, were very similar to stream water. These apparently well‐mixed waters were alkaline, well‐oxygenated and enriched in nutrients. In the weeks and months following redd construction, clear and statistically significant differences in the chemistry of stream and hyporheic waters were observed. Typically, hyporheic water had lower concentrations of dissolved oxygen (mean 7.35 mg L?1 at 0.3 m depth) than stream waters (mean=11.26 mg L?1). Alkalinity, calcium, sulphate and conductivity levels tended to be higher in hyporheic waters, with concentrations increasing with depth. These data implied an increasing influence of groundwater with depth in the hyporheic zone following redd construction; an inference supported by subsequent hydraulic head measurements, which revealed an upwards groundwater flux in the stream bed. However, groundwater–surface water interactions were dynamic and complex: road salts eluted into the stream during periods of snowmelt simulated tracer experiments that implied that a reversed hydraulic gradient may occur at high flows with deeper streamwater penetration and mixing in the hyporheic zone. High flows also result in the mobilization of fine sediments from the stream bed which subsequently infiltrated into spawning gravels. These appear to cause ‘capping’ of redds and probably reduce the hydraulic conductivity of the redd matrix. Infiltrating sediments also contain a small, but probably important organic component, the decomposition of which may contribute to oxygen consumption and nutrient mineralization in the hyporheic zone. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Suitable gravel availability is critical for the spawning success of lithophilous fishes, including redd builders. Redd construction during spawning can alter substrate characteristics, thereby influencing hydraulic conditions and sediment transport, highlighting the importance of spawning as a zoogeomorphic activity. Here, interactions between redd‐building fish and their spawning environment were investigated for European barbel Barbus barbus with a comparative approach across three English rivers: Teme (western), Great Ouse (eastern) and Idle (central). Sediment characteristics of spawning habitats were similar across the rivers, including subsurface fine sediment (<2 mm) content (≈20% dry weight), but elevated subsurface silt content and coarser surface sediments were found in the river Teme. Water velocities were similar at spawning sites despite differences in channel width and depth. Redds were characterized by a pit and tailspill, with no differences in surface grain‐size characteristics between these and the surrounding riverbed, but with topographic alteration (dimensions and tailspill amplitude) in line with those of salmonids. Estimates of the fraction of the bed that spawning barbel were capable of moving exceeded 97% in all rivers. Estimated reproductive potential varied significantly between the rivers Idle and Teme (3,098 to 9,715 eggs/m2), which was largely due to differences in barbel lengths affecting fecundity. Larger barbel, capable of producing and depositing more eggs, but in more spatially extensive redds, meaning fewer redds per given surface area of riverbed. Predictions of barbel egg mortality based on sand content were low across both rivers. The effects of silt on barbel egg and larvae development are unknown, but the levels detected here would significantly impact salmon egg mortality. Similarities in fish length to redd area and the size of moveable grains by spawning barbel and salmon suggest they have similar geomorphic effects on sediments, although fine sediment tolerance is highly divergent.  相似文献   

15.
Dead wood pieces, especially when organized in jams, play an important geomorphic role in streams because of the effects on flow hydraulics, pool formation and sediments storage. The increase in stream morphological diversity and complexity also exerts an important ecological role. This work reports on geomorphic role of large wood (LW) pieces and jams in a third‐order mountain stream located in the Southern Tierra del Fuego (Argentina), and draining an old‐growth Nothofagus‐forested basin not influenced by the beavers damming activity. Even if the in‐stream number of wood pieces (length >1 m; diameter >0.1 m) is comparable to that observed in other climatic areas, the slow growth of the Nothofagus forest causes a lower wood abundance in terms of volumetric load. Because of the relatively small dimensions of the surveyed LW pieces, almost 70% of them demonstrated to have been fluvial transported and also the wood jams reflect the apparent dynamic nature of wood in the channel. Wood jams exert a significant influence on the channel morphology, representing almost half of the drop caused by steps and being responsible for the creation of 30% of the pools. LW‐forced pool volume is strongly and positively correlated to the height of the LW jam. The geomorphic influence of LW jams is also exerted by a considerable sediment storing capacity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Precipitation in fall and winter is important to recharge aquifers in Northern California and the Pacific Northwestern United States, causing the baseflow in rivers ascend during the time when Chinook salmon (Oncorhynchus tshawytscha) construct redds. Herein, we evaluate the availability of spawning habitats under a constant streamflow common in regulated rivers against ascending baseflows patterned from free‐flowing rivers. A binomial logistic regression model was applied to predict the suitability of redd locations based on physical characteristics. Next, two‐dimensional hydrodynamic habitat models were developed at two locations representing a broad range of channel forms common in large rivers. Hydrodynamic and habitat models were leveraged together to simulate the quality, amount, and spatial distribution of spawning habitat at a series of individual flow rates, as well as the combined effect of those flow rates through a spawning season with ascending baseflows. Ascending baseflows increased the abundance of spawning habitat over individual streamflows at a site where the river channel is confined by levee‐like features. However, improvements were greater at an unconfined site that facilitated lateral connectivity and greater expansion of wetted channel area as streamflows increased. Ascending baseflows provided spatial separation in preferred habitats over a spawning season, which may reduce the risk of superimposition among runs or among species. Ascending baseflows provided a benefit across the range of hydrologic regimes in a 100‐year gauge record ranging from 20% to 122% improvements in habitat area over low streamflows that are currently used to manage for spawning habitat. Although replicating natural flow regimes in managed systems can be impossible or impractical, these results demonstrate that incorporating elements of the natural flow regime like ascending baseflows can benefit the restoration and conservation of riverine species.  相似文献   

17.
A 1‐km reach of Brierly Brook, Nova Scotia, was studied from 1995 to 2004 to determine if the addition of artificial structures mimicking large woody debris could enhance Atlantic salmon populations. In 1995, digger logs (which mimic fallen trees) and deflectors (which narrow the channel) were constructed in a 250‐m section of the brook devoid of woody debris (Old Restored Site). In 2003, 5 more digger logs and defectors were built in a previously unrestored section of the stream (New Restored Site). A third control site was left unchanged. Physical changes caused by the structures were monitored at the New Restored Site. Densities of juvenile and spawning Atlantic salmon were also monitored. At all sites, woody debris structures in the brook were important and effective in creating complex salmonid habitat. The structures narrowed the channel, scoured pools and undercut banks. They created habitat that parr used for summer and winter refuge and adult spawners used for cover and resting during upstream migration and spawning. The structures caused gravels to accumulate that spawning adults used to build redds and fry used for shelter. The reaches with structures had higher spawning densities than reaches without them; spawning increased in the New Restored Site relative to the control site. The absence of woody debris may be a bottleneck for salmonid populations in streams of the Atlantic Northeast. For streams with a small or immature riparian zone and little woody debris in the channel, woody structures may be an effective tool for restoring salmonid populations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The recruitment of wood from the riparian zone to rivers and streams provides a complex habitat for aquatic organisms and can influence both aquatic biodiversity and ecosystem function. The Daly River in the wet–dry tropics of northern Australia is a highly seasonal, perennially flowing sand‐bed river where surveys of river wood aggregations at the reach scale (~2 km) in 2008 and 2009 recorded densities of 37–78 km?1 and identified distinct types of river wood aggregations: key pieces, standing trees, fallen trees, wrack and single pieces. After larger than average flows in the 2008/2009 wet season, between 46% and 51% of the surveyed river wood had moved. The distribution of wood age classes indicated continual recruitment and slow turnover of wood within the river. Surveys of fish and habitat characteristics at the mesohabitat scale (~100 m) showed fish species richness; diversity and fish abundance were not correlated to the proportion of wood present. Fish assemblage structure was associated with wood cover as well as other environmental variables such as stream width and depth. The importance of in‐stream wood also varied for different species and age classes of fish. This study documents the dynamic nature of river wood aggregations and their complex and variable distribution and suggests their importance as fish habitat in this tropical river. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Chinook salmon (Oncorhynchus tshawytscha) survival during early life stages depends largely on spawning habitat selection by adults, which has been linked to biophysical stream variables (e.g. stream flow, velocity and substrate composition) as well as hyporheic exchange associated with riffle/pool and run/pool transitions. To examine how physical habitat variables influenced spawning habitat choice in one central Idaho (USA) wilderness stream, we used remote sensing techniques to classify and quantify the total amount of each aquatic habitat type present to assess how habitat quantity changed as stream order increased. Additionally, we measured physical habitat variables at each redd throughout the entire stream length for one spawning season to assess whether Chinook salmon selected for the same habitat parameters at varying spatial scales. Run, riffle and pool habitat types contributed similar proportions to the total area in both the upper and lower basins. However, ‘transitional zones’ (i.e. pool‐riffle and pool‐run transitions) accounted for 16% of the total area in the upper basin and only 4% in the lower. Redds were built in multiple habitat types in each of the three primary spawning locations, but transitional zones were chosen most frequently only in the upper basin. Significant differences in habitat variables were seen between spawning groups, with stream wetted width and velocity accounting for the majority of the variation. The techniques described here could be used to locate features that serve as indicators of potential spawning habitat, although caution should be exercised when extrapolating spawning habitat needs over large spatial extents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
An integral part of population monitoring within fisheries is ground-based surveys of fish redds. Remotely piloted vehicles or drones (RPVs) could provide a complementary method but need verification due to a host of methodological differences. To compare methods, we counted summer Chinook redds (Oncorhynchus tshawytscha) (~6 m2 in size) using RPVs and compared them to ground-based counts in the Wenatchee River (WA, USA). We found individual aerial counts were many times twice the corresponding ground counts. We also found large inter-observer variability among aerial counters. The coefficient of variation among multiple aerial counts were 37%, 38%, and 50% across three sites, which are comparable to published variation in ground counts. We attribute inter-observer variability to inherent uncertainties in redd identification similar to ground counting, and importantly, we did not see evidence that the clarity of substrate in the image influenced observer bias. Overall, our data suggest that redd counting using RPVs is an effective method, particularly in high-density spawning locations. We conclude that RPV imagery accurately identifies redds in a clear, relatively wide (60 m) river, but suggest continuing research into increasing precision, limiting observer variability, and assessing the accuracy across methods and locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号