首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a distributed integrated fault diagnosis and accommodation scheme for leader‐following formation control of a class of nonlinear uncertain second‐order multi‐agent systems. The fault model under consideration includes both process and actuator faults, which may evolve abruptly or incipiently. The time‐varying leader communicates with a small subset of follower agents, and each follower agent communicates to its directly connected neighbors through a bidirectional network with possibly asymmetric weights. A local fault diagnosis and accommodation component are designed for each agent in the distributed system, which consists of a fault detection and isolation module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault‐tolerant controllers, activated after fault detection and after fault isolation, respectively. By using appropriately the designed Lyapunov functions, the closed‐loop stability and asymptotic convergence properties of the leader‐follower formation are rigorously established under different modes of the fault‐tolerant control system.  相似文献   

2.
In this paper, an efficient framework is proposed to the consensus and formation control of distributed multi‐agent systems with second‐order dynamics and unknown time‐varying parameters, by means of an adaptive iterative learning control approach. Under the assumption that the acceleration of the leader is unknown to any follower agents, a new adaptive auxiliary control and the distributed adaptive iterative learning protocols are designed. Then, all follower agents track the leader uniformly on [0,T] for consensus problem and keep the desired distance from the leader and achieve velocity consensus uniformly on [0,T] for the formation problem, respectively. The distributed multi‐agent coordinations performance is analyzed based on the Lyapunov stability theory. Finally, simulation examples are given to illustrate the effectiveness of the proposed protocols in this paper.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper deals with the robust consensus tracking problem for a class of heterogeneous second‐order nonlinear multi‐agent systems with bounded external disturbances. First, a distributed adaptive control law is proposed based on the relative position and velocity information. It is shown that for any connected undirected communication graph, the proposed control law solves the robust consensus tracking problem. Then, by introducing a novel distributed observer and employing backstepping design techniques, a distributed adaptive control law is constructed based only on the relative position information. Compared with the existing results, the proposed adaptive consensus protocols are in a distributed fashion, and the nonlinear functions are not required to satisfy any globally Lipschitz or Lipschitz‐like condition. Numerical examples are given to verify our proposed protocols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper addresses the consensus tracking problem for a class of heterogeneous nonlinear second‐order multi‐agent systems with parametric uncertainties, unmodeled dynamics, and bounded external disturbances. By linearly parameterizing the control input of the leader, two distributed adaptive robust consensus tracking control protocols with dynamic and fixed coupling gains are constructed based on the relative information from neighboring agents. The global tracking errors are shown to be guaranteed to exponentially converge to a ball with a constant radius at a prescribed rate of convergence under external disturbances. Finally, a numerical example is provided to verify the theoretical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the distributed consensus and tracking protocols are developed for the second‐order time‐varying nonlinear multi‐agent systems under general directed graph. Firstly, the consensus and tracking problems can be converted into a conventional stabilization control problem. Then a state transformation is employed to deal with the time‐varying nonlinearities. By choosing an appropriate time‐varying parameter and coupling strengths, exponential consensus and tracking of second‐order nonlinear multi‐agent systems can be achieved. Finally, a simulation is given to illustrate the effectiveness of the proposed consensus and tracking protocols. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This paper considers the consensus tracking control problem for general linear multi‐agent systems with unknown dynamics in both the leader and all followers. Based on parameterizations of the unknown dynamics of all agents, two decentralized adaptive consensus tracking protocols, respectively, with dynamic and static coupling gains, are proposed to guarantee that the states of all followers converge to the state of the leader. Furthermore, this result is extended to the robust adaptive consensus tracking problem in which there exist parameter uncertainties and Lipschitz‐type disturbances in the network. It is also shown that the parameter estimation errors converge to zero based on contradiction method and Lyapunov function approach. Finally, a simulation example is provided to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper studies coordinated control of multiple Lagrangian systems with parametric uncertainties subject to external disturbances by proposing a fully distributed continuous control law based on the improved self‐tuning adaptive observer inspired by non‐identifier‐based high‐gain adaptive control technique. Under this distributed continuous control law, a group of Lagrangian systems are driven to the convex hull spanned by multiple heterogenous dynamic leaders, which can be any combination of step signals of arbitrary unknown magnitudes, ramp signals of arbitrary unknown slopes, and sinusoidal signals of arbitrary unknown amplitudes, initial phases, and any unknown frequencies. It is also worth to mention that this control law we propose, depending neither on any information of leader systems for uninformed followers, nor on external disturbances, even independent of neighbors' velocity, can achieve asymptotic tracking of multiple leaders without any additional condition instead of ensuring the ultimate boundedness of the containment error as in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, an adaptive control approach based on the multidimensional Taylor network (MTN) is proposed here for the real‐time tracking control of multiple‐input–multiple‐output (MIMO) time‐varying uncertain nonlinear systems with noises. Two MTNs are used to formulate the optimum control and adaptive filtering approaches. The feed‐forward MTN controller (MTNC) is developed to realize the precise tracking control. The closed‐loop errors between the filtered outputs and expected values are directly chosen as the MTNC's inputs. A valid initial value selection scheme for the weights of the MTNC, which can ensure the initial stability of adaptive process, is introduced. The proposed MTNC can update its weights online according to errors caused by system's uncertain factors, based on stable learning rate. The resilient backpropagation algorithm and the adaptive variable step size algorithm via linear reinforcement are utilized to update the MTNC's weights. The MTN filter (MTNF) is developed to eliminate measurement noises and other stochastic factors. The proposed adaptive MTN filtering system possesses the distinctive properties of the Lyapunov theory–based adaptive filtering system and MTN. Lyapunov function of the filtering errors between the measured values and MTNF's outputs is defined. By properly choosing the weights update law in the Lyapunov sense, the MTNF's outputs can asymptotically converge to the desired signals. The design is independent of the stochastic properties of the input disturbances. Simulation of the MTN‐based control is conducted to test the effectiveness of the presented results.  相似文献   

9.
This paper studies the problem of synchronisation to a desired trajectory for non-linear multi-agent systems. By introducing extended state observer approach, decentralised adaptive controllers are designed for distributed systems which have non-identical unknown non-linear dynamics. The non-identical unknown non-linear dynamics allows for a tracked command dynamics which is also non-linear and unknown. State variables of agents can be obtained only in the case where leader agent and the network communication topology for multi-agent systems is strongly connected digraph network structures. A Lyapunov-function-based approach is given to show that the tracking error is ultimately bounded. Some simulation results are given to demonstrate the effectiveness of the developed techniques in this paper.  相似文献   

10.
In this paper, an output‐feedback adaptive consensus tracking control scheme is proposed for a class of high‐order nonlinear multi‐agent systems. The agents are allowed to have unknown parameters, unknown nonlinearities, and input quantization simultaneously. The desired trajectory to be tracked is available for only a subset of agents, and only the relative outputs and the quantized inputs need to be measured or transmitted as signal exchange among neighbors regardless of the system order. By introducing a kind of high‐gain K‐filters and a smooth function, the effect among agents caused by the unknown nonlinearities is successfully counteracted, and all closed‐loop signals are proved to be globally uniformly bounded. Moreover, it is shown that the tracking errors converge to a residual set that can be made arbitrarily small. Simulation results on robot manipulators are presented to illustrate the effectiveness of the proposed scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
This paper addresses the synchronization problems with/without a dynamic leader for a team of distributed Lagrange systems on digraph. A systematic way to design and analyze the distributed control algorithms is presented. The contributions of the paper are twofold. First, the adaptive coordination control protocols are proposed for synchronization of networked uncertain Lagrange systems with/without tracking. This protocol can guarantee synchronization in finite time. Second, the design of the distributed tracking controller for the networked dynamic systems is proposed by using Lyapunov methods. The development is suitable for the general digraph communication topologies. Simulation examples are included to demonstrate the effectiveness of the proposed algorithms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we study the robust consensus tracking problem for a class of high‐order multi‐agent systems with unmodelled dynamics and unknown disturbances. A continuous robust state feedback control algorithm is proposed to enable the agents to achieve robust consensus tracking of a desired trajectory. By utilizing Lyapunov analysis methods and an invariance‐like theorem, sufficient conditions for semi‐global asymptotic consensus tracking are established. A robust output feedback control algorithm is designed to obtain a uniformly ultimately bounded consensus tracking result. Numerical simulations are provided to show the effectiveness of the proposed algorithms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This paper considers the containment control problem for multi‐agent systems with general linear dynamics and multiple leaders whose control inputs are possibly nonzero and time varying. Based on the relative states of neighboring agents, a distributed static continuous controller is designed, under which the containment error is uniformly ultimately bounded and the upper bound of the containment error can be made arbitrarily small, if the subgraph associated with the followers is undirected and, for each follower, there exists at least one leader that has a directed path to that follower. It is noted that the design of the static controller requires the knowledge of the eigenvalues of the Laplacian matrix and the upper bounds of the leaders’ control inputs. In order to remove these requirements, a distributed adaptive continuous controller is further proposed, which can be designed and implemented by each follower in a fully distributed fashion. Extensions to the case where only local output information is available and to the case of multi‐agent systems with matching uncertainties are also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This paper is concerned with the tracking control problem for a class of multiple‐input–multiple‐output systems with unmatched disturbances and the unknown additive and multiplicative nonlinearities. The objective is to provide a low‐complexity control solution in the sense that (i) approximating structures are not involved, despite unknown nonlinearities and (ii) iterative calculations of command derivatives are avoided in the backstepping design. A robust adaptive control strategy is proposed to fulfill the task. In the control design, a new‐type adaptive law is first developed to update Nussbaum gains to handle control direction uncertainties, while ensuring Nussbaum gains bounded. Then, the potential robustness of error constraint techniques is exploited to counteract the effects of unknown nonlinearities and disturbances and achieve predefined transient and steady‐state tracking performance. Finally, simulation results are given to illustrate the above theoretical findings.  相似文献   

15.
In this paper, the consensus of second‐order multi‐agent dynamical systems with exogenous disturbances is studied. A pinning control strategy is designed for a part of agents of the multi‐agent systems without disturbances, and this pinning control can bring multiple agents' states to reaching an expected consensus track. Under the influence of the disturbances, disturbance observers‐based control (DOBC) is developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi‐agent systems with disturbances under the composite controller can be achieved for fixed and switching topologies. Finally, by applying an example of multi‐agent systems with switching topologies and exogenous disturbances, the consensus of multi‐agent systems is reached under the DOBC with the designed parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
研究了一类具有不可控不稳定线性化的非线性系统的自适应控制问题.该类系统的控制方向未知且含有不确定时变非线性参数.应用Nussbaum-type增益技术和adding a power integrator递推设计方法,设计了一种鲁棒自适应状态反馈控制器.所设计的控制器能够保证闭环系统的所有信号全局一致有界,且系统的状态渐近趋于零.除了假设未知参数及不确定性有界外,所设计的控制策略不需要控制系数的任何先验知识.仿真例子验证了算法的有效性.  相似文献   

17.
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.  相似文献   

18.
In this paper, a solution to the continuous output‐feedback finite‐time control problem is proposed for a class of second‐order MIMO nonlinear systems with disturbances. First, a continuous finite‐time controller is designed to stabilize system states at equilibrium points in finite time, which is proven correct by a constructive Lyapunov function. Next, because only the measured output is available for feedback, a continuous nonlinear observer is presented to reconstruct the total states in finite time and estimate the unknown disturbances. Then, a continuous output‐feedback finite‐time controller is proposed to track the desired trajectory accurately or alternatively converge to an arbitrarily small region in finite time. Finally, proposed methods are applied to robotic manipulators, and simulations are given to illustrate the applicability of the proposed control approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper considers both semi‐global and global containment control for a second‐order multi‐agent system that is composed by a network of identical harmonic oscillators or double integrators with multiple leaders and input saturation. A distributed low gain feedback algorithm is proposed to solve the semi‐global containment control problem for the network whose topology is directed and initial condition is taken from any a priori given bounded set. In particular, by using a parametric Lyapunov equation approach, M‐matrix properties and algebraic graph theory, an upper bound of the low gain parameter is estimated such that the low gain feedback matrix can be analytically determined without involving numerical computation. Furthermore, under the assumption that the induced subgraph formed by the followers is strongly connected and detail balanced, two linear feedback protocols are designed for coupled harmonic oscillators and coupled double integrators, respectively, to asymptotically achieve the global containment control of the network with any initial condition. Finally, numerical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper studies the containment control problem for multi‐agent systems consisting of multiple leaders and followers connected as a network. The objective is to design control protocols so that the leaders will converge to a certain desired formation while the followers converge to the convex hull of the leaders. A novel protocol is proposed by exploiting the control input information of neighbors. Both continuous‐time and discrete‐time systems are considered. For continuous‐time systems, it is proved that the protocol is robust to any constant delays of the neighbors' control inputs. For discrete‐time systems, a sufficient condition on the feedback gain for the containment control is given in terms of the time delay and graph information. Some numerical examples are given to demonstrate the results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号